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Abstract
We establish a generalization of the thermoelasticity wave equation to the porous case, 
including the Lord–Shulman (LS) and Green–Lindsay (GL) theories that involve a set 
of relaxation times ( �

i
, i = 1,… , 4 ). The dynamical equations predict four propagation 

modes, namely, a fast P wave, a Biot slow wave, a thermal wave, and a shear wave. The 
plane-wave analysis shows that the GL theory predicts a higher attenuation of the fast P 
wave, and consequently a higher velocity dispersion than the LS theory if 𝜏1 = 𝜏2 > 𝜏3 , 
whereas both models predict the same anelasticity for �1 = �2 = �3 . We also propose a gen-
eralization of the LS theory by applying two different Maxwell–Vernotte–Cattaneo relaxa-
tion times related to the temperature increment ( �3 ) and solid/fluid strain components ( �4 ), 
respectively. The generalization predicts positive quality factors when �4 ≥ �3 , and increas-
ing �4 further enhances the attenuation. The wavefields are computed with a direct meshing 
algorithm using the Fourier pseudospectral method to calculate the spatial derivatives and 
a first-order explicit Crank–Nicolson time-stepping method. The propagation illustrated 
with snapshots and waveforms at low and high frequencies is in agreement with the disper-
sion analysis. The study can be useful for a comprehensive understanding of wave propaga-
tion in high-temperature high-pressure fields.
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1 Introduction

The theory of thermo-poroelasticity describes the coupling between the fields of deforma-
tion and temperature. Specifically, an elastic source gives rise to a temperature field and 
attenuation, whereas a heat source induces anelastic deformations. This theory is useful for 
a variety of fields such as seismic attenuation (Budiansky et al. 1983; Armstrong 1984), 
geothermal exploration (Rawal and Ghassemi 2014; Jacquey et  al. 2015; Poletto et  al. 
2018), and thermodynamics (Berezovski and Maugin 2001). Detailed reviews on thermoe-
lasticity can be found in Ignaczak and Ostoja-Starzewski (2010).

Biot (1956) derived the classical parabolic-type differential equations for the Fourier 
law of heat conduction. However, this theory has unphysical solutions as a function of fre-
quency, such as discontinuities and infinite velocities. Lord and Shulman (1967) formu-
lated a more physical system of equations by introducing a single relaxation term into the 
hyperbolic-type heat equation. This theory leads to an attenuation kernel by analogy with 
the Maxwell model of viscoelasticity, and predicts a wave-like propagation behavior at high 
frequencies (Carcione et al. 2019b). A generalization of this theory to the anisotropic case 
was studied by Dhaliwal and Sherief (1980). Green and Lindsay (1972) derived an alterna-
tive theory by introducing two different relaxation times into the constitutive relations for 
the stress tensor and the entropy to represent the dependence of elasticity on temperature 
rate. A comprehensive review of the research works on thermoelasticity is given by Het-
narski and Ignaczak (1999). These two theories predict two P waves and an S wave. The 
two P waves are an elastic wave and a thermal wave having similar characteristics to the 
fast and slow P waves of poroelasticity (Biot 1962). The S wave is not affected by the ther-
mal effects (in homogeneous media). Rudgers (1990) studied the propagation speeds and 
absorption coefficients of these waves as a function of frequency. More recently, Carcione 
et al. (2019b) developed a numerical algorithm for simulation of wave propagation in lin-
ear thermoelastic media, based on the theory of Lord and Shulman (1967). The algorithm 
is a grid method based on the Fourier differential operator and an explicit Crank–Nicolson 
time-integration method. Wang et  al. (2020) derived the frequency-domain Green func-
tion of the Lord–Shulman (LS) thermoelasticity theory. Until now, the simulation of wave 
propagation in thermoelastic media on the basis of the Green and Lindsay (GL) theory still 
has not been achieved.

Poroelastic attenuation, due to conversion of the fast P wave to the slow mode, is analo-
gous to the thermoelastic loss (Norris 1992; Carcione et al. 2020). Biot (1962) first consid-
ered a matrix (skeleton or frame) fully saturated with a fluid and formulated the theory of 
dynamic poroelasticity. This theory predicts the existence of two compressional (P) waves 
and a shear wave. The second slow P wave is diffusive at low frequencies and wave-like at 
high frequencies. The theory makes no assumption on the shape and geometry of the pores 
and grains, and pioneers the study of wave propagation in porous media. The Biot the-
ory was verified extensively by a large number of experimental studies (Berryman 1981; 
Kelder and Smeulders 1997; Gurevich et al. 1999).

The theory of porothermoelasticity combines the equation of heat conduction with the 
poroelasticity equations to describe the couplings between the stress components and tem-
perature fields in porous media (Bear et al. 1992; Sharma 2008). Youssef (2007) derived the 
governing equations that describe the behavior of thermoelastic porous media in the context of 
a generalized thermoelasticity with one relaxation time (LS), and further proved the unique-
ness of the solution. On the basis of this theory, Singh (2011) investigated the propagation 
of plane waves, and discussed the effect of porosity on the different waves. Sharma (2008) 
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studied the propagation and attenuation of the four waves, namely, a fast P wave, a slow Biot 
wave, a slow thermal wave, and a shear wave. The two slow waves present a diffusive behavior 
under certain conditions, depending on viscosity, frequency, and the thermoelastic constants. 
Carcione et al. (2019a) derived the thermo-poroelastic equations by combining Biot equations 
with those of Lord and Shulman (1967). The wavefields are computed with a meshing algo-
rithm using the Fourier pseudospectral method.

In this work, we present a system of generalized thermo-poroelasticity equations. The 
equations comprise the LS and GL theories, depending on specific relaxation times. Moreo-
ver, we further discuss the generalization of the original LS theory, by varying the two Max-
well–Vernotte–Cattaneo relaxation times in the heat equation. The corresponding plane-wave 
analysis is carried out, which shows the differences (velocity and attenuation) between the LS 
and GL theories. We then develop a numerical algorithm for the simulations of wave propaga-
tion. The algorithm, based on a direct-grid method, computes snapshots and waveforms that 
illustrate wave propagation in general thermo-poroelastic media.

2  Equations of Motion

Considering a 2D isotropic medium, let us define by vi and qi , i = x, z , the components of the 
particle velocities of the frame and fluid relative to the frame, respectively, �ij the components 
of the total stress tensor, p the fluid pressure, and T the increment of temperature above a 
reference absolute temperature T0 corresponding to the state of zero stress and strain. The gen-
eral dynamic thermo-poroelasticity equations, including both the LS and GL models, can be 
obtained with a modification of the equations given in Carcione et al. (2019a) as follows.

Constitutive equations:

where �1 and �2 are the relaxation times representing the dependence of elastic behavior on 
temperature rate, fxx , fzz , fxz and ff  are the external sources, and � and �f  are the coefficients 
of thermoelasticity of the bulk material and fluid, respectively. The subscript “, i” denotes 
the spatial derivative and a dot above a variable indicates a time derivative. The subscripts 
“m” and “f” refer to the solid (dry) matrix and the fluid, respectively. � is the Lamé constant 
of the dry rock, � is the shear modulus of the dry (and saturated) rock, M is related to the 
elastic coupling between the solid and the fluid and � is Biot’s effective stress coefficient. 
We have

(1)

�̇�xx = 2𝜇vx,x + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(Ṫ + 𝜏1T̈) + fxx,

�̇�zz = 2𝜇vz,z + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(Ṫ + 𝜏1T̈) + fzz,

�̇�xz = 𝜇(vx,z + vz,x) + fxz,

�̇�f = − 𝜙ṗ = 𝜙M𝜖 − 𝛽f (Ṫ + 𝜏2T̈) + ff ,

𝜖 = 𝛼𝜖m + 𝜖f , 𝜖m = vx,x + vz,z, 𝜖f = qx,x + qz,z,

(2)

M =
Ks

1 − � − Km∕Ks + �Ks∕Kf

,

� = 1 −
Km

Ks

,

Km = � +
2

3
�,
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where � is the porosity, and Km , Ks and Kf  the bulk moduli of the drained matrix, solid and 
fluid, respectively.

The corresponding dynamical equations are:

where

is the composite density, with �s and �f  the solid and fluid densities, respectively. The 
parameter m = T�f∕� , with T  the tortuosity of pores, describes the inertial coupling 
between fluid and solid phases, � is the fluid viscosity, � is the permeability of the medium, 
and fi are the external forces. The Darcy law defines the movement of the viscous fluid, 
which is assumed to be of a Poiseuille type at low frequencies.

The Fourier law of heat conduction is

where

(Dhaliwal and Sherief 1980), with � the bulk coefficient of heat conduction, and �
�
= �� in 

the homogeneous case with � the Laplacian; c is the bulk specific heat of the unit volume 
in the absence of deformation, �3 and �4 are Maxwell–Vernotte–Cattaneo relaxation times, 
respectively, q is the heat source.

These equations assume thermal equilibrium between the solid and fluid, i.e., the 
temperature in both phases is the same. Thermal equilibrium is valid when the inter-
stitial heat transfer coefficient between the solid and fluid is very large and the ratio of 
pore surface area to pore volume is sufficiently high. Equations (1), (3) and (5) include 
both the GL and the LS models. The first is obtained with �4 = 0, whereas the sec-
ond with �1 = �2 = 0 and �3 = �4 ≡ � , in which case, the equations are those of Car-
cione et  al. (2019a). Ignaczak and Ostoja-Starzewski (2010,  p. 23) show that the GL 
relaxation times must satisfy �1 = �2 ≥ �3 [their Eq. (1.3.56)]. Moreover, in the case 
�1 = �2 = �3 , the so-called central operators of the LS and GL theories coincide (Corol-
lary 6.1 of Ignaczak and Ostoja-Starzewski 2010, p. 132), although this does not mean 
that the temperature in both theories is the same.

3  Particle Velocity–Stress–Temperature Formulation

Following Carcione et al. (2019a), in the following, we recast Eqs. (1), (3) and (5) as 
new expressions to be used for the numerical simulation of the fields.

Equations (3) yield

(3)

𝜎xx,x + 𝜎xz,z = 𝜌v̇x + 𝜌f q̇x + fx,

𝜎xz,x + 𝜎zz,z = 𝜌v̇z + 𝜌f q̇z + fz,

−p,x = 𝜌f v̇x + mq̇x +
𝜂

𝜅

qx,

−p,z = 𝜌f v̇z + mq̇z +
𝜂

𝜅

qz,

(4)� = (1 − �)�s + ��f

(5)𝛥
𝛾
T = c(Ṫ + 𝜏3T̈) + 𝛽T0

[

(𝜖m + 𝜏4�̇�m) + (𝜖f + 𝜏4�̇�f )
]

+ q,

(6)�
�
= (�T,x),x + (�T,z),z
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where

Defining

Eq. (5) becomes

The velocity–stress–temperature system of equations is completed with the constitutive 
equations in (1), which can be re-written as

A plane-wave analysis to obtain the phase velocity and attenuation factor of the wave 
modes is given in Appendix 1. The equations predict three P waves, namely, a fast P wave, 
a Biot slow wave and a slow thermal wave.

3.1  The Algorithms

The velocity–stress–temperature differential equations can be written in matrix form as

where

is the unknown array vector,

is the source vector with q� = −(c�3)
−1q , and � is the propagation matrix containing the 

spatial derivatives and medium properties. Following Carcione et al. (2019a), the solution 
to equation (12) subject to the initial condition �(0) = �0 is

(7)

v̇x = 𝛽11(𝜎xx,x + 𝜎xz,z − fx) − 𝛽12

(

p,x +
𝜂

𝜅

qx

)

≡ 𝛱x,

v̇z = 𝛽11(𝜎xz,x + 𝜎zz,z − fz) − 𝛽12

(

p,z +
𝜂

𝜅

qz

)

≡ 𝛱z,

q̇x = 𝛽21(𝜎xx,x + 𝜎xz,z − fx) − 𝛽22

(

p,x +
𝜂

𝜅

qx

)

≡ 𝛺x,

q̇z = 𝛽21(𝜎xz,x + 𝜎zz,z − fz) − 𝛽22

(

p,z +
𝜂

𝜅

qz

)

≡ 𝛺z,

(8)
[

�11 �12

�21 �22

]

= (�f
2 − �m)−1

[

−m �f

�f −�

]

.

(9)Ṫ = 𝜓 ,

(10)

�̇� = (c𝜏3)
−1
[

𝛥
𝛾
T − q − 𝛽T0(𝜖m + 𝜏4(𝛱x,x +𝛱z,z) + 𝜖f + 𝜏4(𝛺x,x +𝛺z,z))

]

−
1

𝜏3

𝜓 ≡ 𝛱 .

(11)
�̇�xx = 2𝜇vx,x + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(𝜓 + 𝜏1𝛱) + fxx,

�̇�zz = 2𝜇vz,z + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(𝜓 + 𝜏1𝛱) + fzz.

�̇�f = −𝜙ṗ = 𝜙M𝜖 − 𝛽f (𝜓 + 𝜏2𝛱) + ff .

(12)�̇ + � = ��,

(13)� = [vx, vz, qx, qz, 𝜎xx, 𝜎zz, 𝜎xz, p, T ,𝜓]⊤

(14)� = [−𝛽11fx,−𝛽11fz,−𝛽21fx,−𝛽21fz, fxx, fzz, fxz,−ff∕𝜙, 0, q
�]⊤
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where exp(t�) is the evolution operator.
The eigenvalues of � have negative real parts and differ greatly in magnitude. The pres-

ence of large eigenvalues, together with small eigenvalues, makes the problem stiff (Car-
cione et al. 2019a), and the real positive eigenvalues can induce instability during the com-
putation. We solve the stiff problems with the Crank–Nicolson time-integration methods 
given in Appendix 2. The spatial derivatives are calculated with the Fourier method by 
using the FFT. This spatial approximation is infinitely accurate for band-limited periodic 
functions with cutoff spatial wavenumbers which are smaller than the cutoff wavenumbers 
of the mesh. Alternatively, another time stepping method based on a second-order accurate 
splitting or partition method can be used. This method solves both problems (stiffness and 
instability) by calculating the unstable part of the differential equations analytically. The 
method for the LS model has been implemented in Carcione et al. (2019a, Appendix C).

4  Physics and Simulations

We consider the medium properties given in Table 1. The coefficients of thermal expansion 
�m and �f  are 2.715 ×10−6 ◦K−1 and 3.333 ×10−5 ◦K−1 , respectively, such that �m = 3�mKs 
= 3.91 ×105 kg∕(m s2 ◦K) , and �f = 3�f Kf  = 2.2 ×105 kg∕(m s2 ◦K) (Sharma 2008). Here 
we use a large � for a better illustration of the physics. On the basis of properties given in 
Table 1, we compare the LS and GL theories, with a plane-wave analysis and wavefield 
simulations, and illustrate the results of a generalized LS theory.

(15)�(t) = exp(t�)�0 +
∫

t

0

exp(��)�(t − �)d�,

Table 1  Medium properties
Grain bulk modulus, Ks 48 GPa
Density, �s 2650 kg/m3

Frame bulk modulus, Km 2.4 GPa
Shear modulus, �m 3 GPa
Porosity, � 0.3
Permeability, � 1 darcy
Tortuosity, T 2
Water density, �f 1000 kg/m3

Viscosity, �f 0.001 Pa s
Bulk modulus, Kf 2.2 GPa
Thermoelasticity coefficient, �f 2.2 ×105 kg∕(m s2 ◦K)

Bulk specific heat, c 3 ×105 kg∕(m s2 ◦K)

Thermoelasticity coefficient, � 6 ×105 kg∕(m s2 ◦K)

Absolute temperature T0 300 ◦K
Thermal conductivity, � 1.4 ×107 m kg∕(s3 ◦K)

Relaxation time, �1 3 ×10−3 s
Relaxation time, �2 3 ×10−3 s
Relaxation time, �3 1.5 ×10−3 s
Relaxation time, �4 1.5 ×10−3 s
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4.1  Comparison Between the Lord–Shulman and Green–Lindsay Theories

As has been discussed in Ignaczak and Ostoja-Starzewski (2010), the relaxation times of 
the GL model satisfy �1 = �2 ≥ �3 . If �1 = �2 = �3 , the so-called central operators of the LS 
and GL theories coincide. Figures 1 and 2 show the phase velocities and dissipation factors 
of the fast P-wave, slow P-wave and T-wave as a function of frequency when 𝜏1 = 𝜏2 > 𝜏3 , 
and c = 3 ×105 kg∕(m s2 ◦K) . We observe that the slow and thermal waves are strongly dif-
fusive at low frequencies. The fast P wave has two relaxation peaks at 100 Hz and 20 kHz, 
respectively, corresponding to the thermal loss and Biot mechanism. The GL theory exhib-
its more thermal loss than the LS theory, and consequently has a larger velocity disper-
sion, and predicts a higher velocity at the high frequencies. The T-wave and slow P-wave 
are wave-like at high frequencies. At these frequencies, the GL theory predicts a slightly 
higher slow P-wave phase velocity but a smaller T-wave velocity than the LS theory.

A smaller value of c = 3 × 104 kg∕(m s2 ◦K) highlights the difference between the two 
theories. As displayed in Figs. 3 and 4, decreasing c induces a much higher attenuation of 
the fast P-wave, and enhances the velocity dispersion, especially for the GL theory. The 
slow P-wave and T-wave velocity differences at high frequencies between the two theories 
become more evident. The thermal wave has another relaxation peak at 10 kHz, and con-
sequently exhibits another velocity dispersion at high frequencies. A smaller c yields larger 
propagation velocities of the fast P-wave, slow P-wave and T-wave at high frequencies. It 
is evident that the waves propagate with different characteristics at different frequencies, 

(a) (b)

(c)

Fig. 1  Phase velocities of the a fast P-wave, b slow P-wave, and c the T-wave, as a function of frequency. 
c = 3 ×105 kg∕(m s2 ◦K) . The LS results are obtained by using �1 = �2 = 0, and �3 = �4 = 1.5 ×10−3 s, 
whereas the GL results are obtained with �1 = �2 = 3 ×10−3 s, �3 =1.5 ×10−3 s, and �4 = 0
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which is illustrated in the following numerical examples. Moreover, the curves indicated 
with circles, showing the results of the GL model when �1 = �2 = �3 , overlap with those of 
the LS theory, confirming that both theories coincide in this case, as has been theoretically 
shown by Ignaczak and Ostoja-Starzewski (2010).

In the following, we use the smaller value of c in Figs. 3 and 4 to highlight the T-wave 
propagation, and simulate the wavefields using the algorithm given in Appendix 2. We 
consider a model with 232 × 232 grid points. The source is located at the center of the 
model and its time history is

where f0 is the central frequency and t0 = 3∕(2f0) is the time delay.
We first consider a central frequency of 500 Hz, where the T-wave and slow wave have 

wave-like and diffusive behaviors, respectively. We assume a grid spacing of dx = dz = 0.3 
m and a time step dt = 0.015 ms. The sources are dilatational ( fxx, fzz , and ff  ) to highlight 
only the compressional waves. Figures 5, 6 and 7 show the simulated snapshots of vz , qz 
and T at 14.25 ms, respectively.

We observe that the fast P-wave computed with the LS theory propagates more 
slowly but exhibits smaller attenuation than that predicted by the GL theory. The 
slow P-wave is diffusive due to the strong attenuation and the wavefront is confined 
to the source location in the qz snapshot. The T wave is more attenuated than the fast 
P wave and can be seen in the inner wavefront, particularly in the T-component snap-
shot. The GL theory predicts a smaller T-wave phase velocity than the LS theory. All 

(16)h(t) = cos[2�(t − t0)f0]exp [−2(t − t0)
2f 2
0
],

(a) (b)

(c)

Fig. 2  Dissipation factors of the a fast P-wave, b slow P-wave, and c the T-wave, corresponding to Fig. 1
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these conclusions are in agreement with the dispersion analysis shown in Figures  3 
and 4. The corresponding waveforms of the vz particle velocity at (24, 24) m are dis-
played in Fig. 8, which further confirms the above analyses. A comparison between the 
Crank–Nicolson and splitting schemes (Carcione et al. 2019a) for the LS model shows 
that both methods yield the same waveform, constituting a test with two different soft-
ware codes, which confirms the effectiveness of the Crank–Nicolson scheme.

Next, we consider a central frequency of 1 MHz. A grid spacing of dx = dz = 0.15 
mm, and dt = 0.0075 � s are used, and the sources are dilatational. Figures 9, 10 and 11 
show the vz , qz and T snapshots at 7.125 � s, and Fig. 12 displays the waveform of the 
vz-component at (13.5, 13.5) mm. Unlike those shown in Figs. 5, 6 and 7, all the three 
modes are wavelike, in agreement with the dispersion analysis of Figs. 3 and 4. The 
propagation differences are induced by the thermal and Biot losses, causing significant 
velocity dispersion and attenuation of the slow P and T waves when the frequency is 
increased from 500 Hz to 1 MHz (see Figs. 3 and 4). The fast P-wave velocity obtained 
with the GL theory is higher than that of the LS theory. On the contrary, the velocity 
of the T wave, based on the GL theory, is smaller. The waveforms in Fig. 12 further 
show these properties.

(a) (b)

(c)

Fig. 3  Phase velocities of the a fast P-wave, b slow P-wave, and c the T-wave, as a function of frequency. 
c = 3 ×104 kg∕(m s2 ◦K) . The LS results are obtained by using �1 = �2 = 0, and �3 = �4 = 1.5 ×10−3 s. The 
GL results in red lines are obtained with �1 = �2 = 3 ×10−3 s, �3 =1.5 ×10−3 s, and �4 = 0, whereas those 
represented by the blue circles, which overlap with the black lines, are obtained with �1 = �2 = 1.5 ×10−3 s, 
�3 =1.5 ×10−3 s, and �4 = 0
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4.2  Generalized Lord–Shulman Theory

The original LS theory (Lord and Shulman 1967) assumes that the two relaxation times �3 
and �4 are the same. The plane-wave analysis shows that 𝜏4 < 𝜏3 , yields negative quality 

(b)(a)

(c)

Fig. 4  Dissipation factors of a fast P-wave, b slow P-wave, and c the T-wave, corresponding to Fig. 3

T-wave

fast P-wave 

0 

34.8 

69.6 

Distance (m) 

D
ep

th
 (m

) 

0 34.8 0 34.8 69.6 

Fig. 5  Snapshots of the particle velocity of the frame v
z
 at 14.25 ms, based on the LS (left) and GL (right) 

theories, respectively. c = 3 ×104 kg∕(m s2 ◦K) . The dominant frequency of the source is 500 Hz
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factors, indicating that the propagation is unstable. When 𝜏4 > 𝜏3 , the quality factors are 
positive. In the following, we further examine this generalized LS theory by considering 
three different values of �4.

Figures  13 and 14 show the phase velocities and dissipation factors as a function of 
frequency, obtained with the generalized LS theory with different values of �4 . In this 
case, c = 3 ×104 kg∕(m s2 ◦K) . We observe that the attenuation of the fast wave increases 
with increasing �4 , which causes an increased velocity dispersion. At high frequencies, the 
phase velocities of the fast and slow waves increase with �4 , whereas the T-wave velocity 
decreases.

Figures 15, 16 and 17 show the snapshots of vz , qz and T at 14.25 ms, using three values 
of �4 . The modeling parameters are the same as those described in Figs. 5 and 6. Both the 
fast P- and T- wavefronts can be observed. Increasing �4 , the velocity and attenuation of 
the fast P-wave increase. This can clearly be seen in Fig. 18, which shows the vz waveform 
at (24, 24) m. The T-wave velocity decreases with increasing �4 , and is more attenuated in 
comparison with the fast P wave, which is also in agreement with the dispersion analysis. 
The slow P-wave is diffusive and can be seen in the qz snapshot at the source location.

Figures 19 and 20 show the simulated snapshots using a central frequency of 1 MHz. 
In this case, all three compressional wave modes are present. The velocities of the fast and 
slow waves increase with increasing �4 , whereas those of the T-wave decrease. The wave-
forms displayed in Fig. 21 further prove this, in agreement with the plane-wave analysis. 
The slow wave and T wave can more clearly be observed in the qz-component snapshot.

4.3  Heterogeneous Medium

Finally, we present a two-layer model. The upper medium has Km = 2.4 GPa and �m = 3 
GPa, whereas the lower medium has Km = 9 GPa and �m = 10 GPa. Moreover, we take c 
= 3 ×104 kg∕(m s2 ◦K) for the upper medium and c = 6 ×104 kg∕(m s2 ◦K) for the lower 
medium. All the other properties are the same as those of Table 1.
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Figure 22 shows the snapshots of the particle velocity of the fluid relative to the solid qz , 
when the dominant frequency of the source is 500 Hz. The source is located at the center 
of the interface. We consider a 402 × 402 mesh, with dx = dz = 0.3 m, and a vertical source 
( fz ) is used, which also generates shear wave. As previously discussed, the slow wave is 
dissipative and can be recognized at the source location. In this case, the propagation of the 
S-wave is not affected by the thermal effect and therefore exhibits the same behavior when 
comparing the results of the LS and GL theories. On the contrary, the fast waves in the 
two layers are evidently affected, with the GL theory giving higher velocity and attenua-
tion. The T-wave is more attenuated and can be seen in the inner wavefronts. Head (lateral) 
waves having a planar wavefront can also be observed.

Figures  23 and 24 show the snapshots of vz and T, when the dominant frequency 
is 1 MHz. In this case, we consider a 402 × 402 mesh, with dx = dz = 0.15 mm. The 

Fig. 8  Waveform comparison 
of the particle velocity of the 
frame v

z
 at (24, 24) m, corre-

sponding to the LS (black line) 
and GL (red line) theories. c 
= 3 ×104 kg∕(m s2 ◦K) . The 
fields are normalized. The 
curve indicated with the circles, 
overlapping with the black curve, 
is obtained by using the time-
splitting operator developed by 
Carcione et al. (2019a)
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Fig. 9  Snapshots of the particle velocity of the frame v
z
 at 7.125 � s, corresponding to the LS (left) and GL 

(right) theories. c = 3 ×104 kg∕(m s2 ◦K) . The dominant frequency of the source is 1 MHz
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Biot slow wave propagates. The T-wave, which can be clearly identified as the inner 
wavefront in the T-component snapshot, propagates slower and is more attenuated in 
the lower medium, because a larger c is assumed. The shear wave is not present in the 
T-component snapshot. Even if the heterogeneity is simple, the wavefield can be com-
plex. Substantial mode conversion occurs in more general media, making the interpreta-
tion of the wavefields more difficult.
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Fig. 10  Snapshots of the particle velocity of the fluid relative to the solid q
z
 at 7.125 � s, corresponding to 

the LS (left) and GL (right) theories. The dominant frequency of the source is 1 MHz
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Fig. 11  Snapshots of the temperature wavefield T at 7.125 � s, corresponding to the LS (left) and GL (right) 
theories. The dominant frequency of the source is 1 MHz. The GL result has been enhanced by a factor 104
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5  Conclusions

We have considered a generalized system of thermo-poroelasticity equations, which include 
the Lord–Shulman and Green–Lindsay theories. Moreover, we propose a numerical algorithm 

Fig. 12  Waveform comparison 
at (13.5, 13.5) mm, between 
the LS (black line) and GL 
(red line) theories. c = 3 
×104 kg∕(m s2 ◦K)

(a) (b)

(c)

3

3

3

Fig. 13  Phase velocities of the a fast P-wave, b slow P-wave, and c the T-wave as a function of frequency, 
corresponding to the generalized LS theory with three different values of �4 . c = 3 ×104 kg∕(m s2 ◦K)
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to solve these equations. The dispersion analysis indicates that both theories predict four 
wave modes, namely, fast P wave, S wave, Biot slow wave and a thermal wave. The latter 
two are diffusive at low frequencies and wave-like at high frequencies. The Green–Lindsay 
theory predicts a higher attenuation and more velocity dispersion of the fast P-wave than the 
Lord–Shulman theory if 𝜏1 = 𝜏2 > 𝜏3 . The two theories coincide if �1 = �2 = �3 . The clas-
sic Lord–Shulman model can be further generalized by using two different values of the 

(a) (b)

(c)

Fig. 14  Dissipation factors of the a fast P-wave, b slow P-wave, and c the T-wave, corresponding to Fig. 13
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Fig. 15  Snapshots of the particle velocity of the frame v
z
 at 14.25 ms, corresponding to the gen-

eralized LS theories with �4 = 1.5 ×10−3 s (left), 2.5 ×10−3 s (middle), and 3.5 ×10−3 s (right). c = 3.0 
×104 kg∕(m s2 ◦K) . The dominant frequency of the source is 500 Hz
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Fig. 17  Snapshots of the temperature wavefield T at 14.25 ms, corresponding to the generalized LS 
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Fig. 18  Waveform comparison 
at (24, 24) m, corresponding to 
the generalized LS theory with 
three different values of �4 . c = 3 
×104 kg∕(m s2 ◦K)
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Fig. 19  Snapshots of the particle velocity of the frame v
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 at 7.125 � s, corresponding to the generalized LS 
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Fig. 21  Waveform comparison at (13.5, 13.5) mm, corresponding to the generalized LS theory, with three 
values of �4 . c = 3 ×104 kg∕(m s2 ◦K)
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Maxwell–Vernotte–Cattaneo relaxation times, �3 and �4 . The choice �4 ≥ �3 gives positive 
attenuation and increasing �4 further enhances the attenuation of the fast wave.

The numerical solver is a direct-grid algorithm based on the Fourier pseudospectral method 
to compute the spatial derivatives and a Crank–Nicolson time-stepping scheme, which yields 
the same solutions as the splitting scheme. The simulated snapshots and waveforms illustrate 
the dissipative and wave-like behavior of the Biot slow and thermal waves at the low and high 
frequencies, respectively. The differences between the Green–Lindsay and Lord–Shulman 
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Fig. 22  Snapshots of the q
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and lower media are the values of the dry-rock moduli K
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Fig. 23  Snapshots of the v
z
 component at 9.75 � s, corresponding to the two-layer model based on the LS 

(left) and GL (right) theories. The interface is located at a depth of 25.5 mm. The differences between the 
upper and lower media are the values of the dry-rock moduli K
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theories are in agreement with the dispersion analysis. The modeling can be extended to the 
anisotropic and three-dimensional cases in a future study.
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Appendix 1: Plane‑wave analysis

We consider a 1D medium to analyze the phase velocity and attenuation of the different 
waves modes involved in the propagation, because the medium is isotropic. The S wave 
is not affected by the temperature effects, and its complex velocity is that of Biot theory 
(Carcione 2014):

In 1D case, the field vector becomes � = [v, q, 𝜎, p,T]⊤ . Considering a plane wave of the 
form exp[i(�t − kx)] , where � is the angular frequency and k is the complex wavenumber, 
Eqs. (1), (3) and (5) in 1D case reduce to

(17)vc( S wave) = vc =

√

�

� − �
2
f
[m − i�∕(��)]−1

.
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Fig. 24  Snapshots of the T component at 9.75 � s, corresponding to Fig.  23. The GL result has been 
enhanced by a factor 104
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where E = � + 2�.
This is a homogeneous system of linear equations whose solution is not zero if the 

determinant of matrix � is zero, whose components are

Based on it, we obtain the dispersion relation for P waves:

where

When � = �f  = 0, we obtain a quadratic equation about vc , corresponding to Biot velocities 
for the fast and slow P waves:

and an additional root:

for the decoupled thermal wave, where a is the thermal diffusivity (Carcione et al. 2019a). 
It is evident that, at low frequencies, this velocity is zero.

The plane-wave analysis performed here is similar to the 1D time-periodic solutions 
obtained by Ignaczak and Ostoja-Starzewski (2010), whose complex wavenumbers are 
given by their Eq. (11.1.32), corresponding to the thermal and elastic waves. The phase 
velocity and attenuation factor can be obtained from the complex velocity as

(18)

−k𝜎 = 𝜔𝜌v + 𝜔𝜌f q,

kp = 𝜔𝜌f v + 𝜔mq − (i𝜂∕𝜅)q,

𝜔𝜎 = −kEv − 𝛼kM(𝛼v + q) − 𝜔𝛽𝜏1T ,

𝜙𝜔p = 𝜙kM(𝛼v + q) + 𝜔𝛽f 𝜏2T ,

ikT0𝛽𝜏4(v + q) = [𝛾k2 + i𝜔c𝜏3]T ,

𝜏l = 1 + i𝜔𝜏l, l = 1,… , 4,

(19)

a11 = 𝜔𝜌, a12 = 𝜔𝜌f , a13 = k, a14 = 0, a15 = 0,

a21 = 𝜔𝜌f , a22 = 𝜔m − i𝜂∕𝜅, a23 = 0, a24 = −k, a25 = 0,

a31 = −k(E + 𝛼
2M), a32 = −𝛼kM, a33 = −𝜔, a34 = 0, a35 = −𝜔𝛽𝜏1,

a41 = 𝜙𝛼kM, a42 = 𝜙kM, a43 = 0, a44 = −𝜔𝜙, a45 = 𝜔𝛽f 𝜏2,

a51 = −ikT0𝛽𝜏4, a52 = a51, a53 = 0, a54 = 0, a55 = i𝜔c𝜏3 + 𝛾k2.

(20)a6v
6
c
+ a4v

4
c
+ a2v

2
c
+ a0 = 0,

(21)

a0 = i𝜔2
𝜙𝛾ME,

a2 = − 𝜔

{

𝜙

[

b𝛾EG + i𝜔𝛾(mEG +M(𝜌 − 2𝛼𝜌f )) + cME𝜏3
]

+𝛽T0𝜏4
[

𝛽f E𝜏2 + (1 − 𝛼)M(𝜙𝛽𝜏1 − 𝛼𝛽f 𝜏2)
]}

,

a4 = b𝜙
[

𝜔𝜌𝛾 − icEG𝜏3 − i𝛽2T0𝜏1𝜏4
]

+ 𝜔

[

i𝜔𝛾𝜙(m𝜌 − 𝜌
2
f
) + c𝜙𝜏3(mEG

+M(𝜌 − 2𝛼𝜌f )) + 𝛽T0𝜏4[𝛽𝜙(m − 𝜌f )𝜏1 + 𝛽f (𝜌 − 𝜌f )𝜏2]
]

,

a6 = c𝜙𝜏3

[

ib𝜌 + 𝜔(𝜌2
f
− m𝜌)

]

,

EG = E + 𝛼
2M, b =

𝜂

𝜅

.

(22)(−ib� + �m� − ��
2
f
)v4

c
+ (ibEG − �mEG − �M� + 2��M�f )v

2
c
+ �ME = 0,

(23)vc =

√

i𝜔a2

𝜏3

, a =

√

𝛾

c
,
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respectively (e.g., Carcione 2014).

Appendix 2: Crank–Nicolson explicit scheme

The Crank–Nicolson explicit scheme has been implemented by Carcione and Quiroga-
Goode (1995) to solve the equations of poroelasticity and by Carcione et  al. (2019b) to 
solve the thermoelasticity equations. The scheme, applied to the thermo-poroelasticity 
equations, is

where

are the central differences and mean value operators. In this three-level scheme, the parti-
cle velocities and � at time (n + 1∕2)dt and stresses and temperature at time (n + 1)dt are 
computed explicitly from particle velocities and � at time (n − 1∕2)dt , and stresses and 
temperature at time (n − 1)dt and ndt, respectively.

For example, by expanding the third equation in (25), we obtain

(24)vp =
[

Re
(

v−1
c

)]−1
and Q =

Re(v2
c
)

Im(v2
c
)
,

(25)

D1∕2vx = 𝛽11(𝜎xx,x + 𝜎xz,z − fx)
n − 𝛽12p

n
,x
−

𝜂

𝜅

𝛽12A
1∕2qx = 𝛱

n
x
,

D1∕2vz = 𝛽11(𝜎xz,x + 𝜎zz,z − fz)
n − 𝛽12p

n
,z
−

𝜂

𝜅

𝛽12A
1∕2qz = 𝛱

n
z
,

D1∕2qx = 𝛽21(𝜎xx,x + 𝜎xz,z − fx)
n − 𝛽22p

n
,x
−

𝜂

𝜅

𝛽22A
1∕2qx = 𝛺

n
x
,

D1∕2qz = 𝛽21(𝜎xz,x + 𝜎zz,z − fz)
n − 𝛽22p

n
,z
−

𝜂

𝜅

𝛽22A
1∕2qz = 𝛺

n
z
,

𝜖m = (A1∕2vx),x + (A1∕2vz),z,

𝜖f = (A1∕2qx),x + (A1∕2qz),z,

𝜖 = 𝛼𝜖m + 𝜖f ,

�̇�m = (𝛱n
x
),x + (𝛱n

z
),z,

�̇�f = (𝛺n
x
),x + (𝛺n

z
),z,

𝛥
𝛾
Tn = c(A1∕2

𝜓 + 𝜏3D
1∕2

𝜓) + 𝛽T0[(𝜖m + 𝜏4�̇�m) + (𝜖f + 𝜏4�̇�f )] + qn,

Tn+1 = Tn + dt 𝜓n+1∕2,

𝛱
n = (c𝜏3)

−1[𝛥
𝛾
Tn − qn − 𝛽T0(𝜖m + 𝜏4(𝛱

n
x,x

+𝛱
n
z,z
) + 𝜖f + 𝜏4(𝛺

n
x,x

+𝛺
n
z,z
))] −

1

𝜏3

A1∕2
𝜓 ,

D1
𝜎xx = 2𝜇(A1∕2vx), x + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(A1∕2

𝜓 + 𝜏1𝛱
n) + fxx,

D1
𝜎zz = 2𝜇(A1∕2vz), z + 𝜆𝜖m + 𝛼M𝜖 − 𝛽(A1∕2

𝜓 + 𝜏1𝛱
n) + fzz,

D1
𝜎xz = 𝜇[(A1∕2vx), z + (A1∕2vz), x)] + fxz,

𝜙D1p = − 𝜙M𝜖 + 𝛽f (A
1∕2

𝜓 + 𝜏2𝛱
n) − ff ,

(26)Dj
� =

�
n+j − �

n−j

2jdt
, and Aj

� =
�
n+j + �

n−j

2
,
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Then,

Similarly,

The equations for the other components can be similarly derived, based on equation (25). 
The numerical algorithms can be implemented on a staggered grid. For example, by defin-
ing vx and qx at coordinate (x + dx∕2, z) , vz and qz at coordinate (x, z + dz∕2) , �xx, �zz,� , T  
and p at (x + dx, z + dz) , and �xz at (x + dx∕2, z + dz∕2) , the spatial derivatives in equation 
(25) can be obtained with the pseudospectral method as,

(27)qn+1∕2
x

(

1 +
b

2
�22dt

)

= qn−1∕2
x

(

1 −
b

2
�22dt

)

+ dt[�21(�xx,x + �xz,z)
n − �22p

n
,x
].

(28)vn+1∕2
x

= vn−1∕2
x

+ dt
[

�11(�xx,x + �xz,z)
n − �12p

n
,x
− �12

�

2k
(qn+1∕2

x
+ qn−1∕2

x
)
]

.

(29)
�
n+1
zz

= �
n−1
zz

+ 2dt�(vn+1∕2
z

+ vn−1∕2
z

),z + 2dt(� + �
2M)�m + 2dt�M�f

− dt�(�n+1∕2 + �
n−1∕2) − 2dt��1�

n.

Table 2  Crank–Nicolson scheme for the thermo-poroelasticity equations

Input:

The initialized wavefields, �−1
xx

 , �0
xx

 , �−1
zz

 , �0
zz

 , �−1
xz

 , �0
xz

 , p−1 , p0 , q−1∕2x  , q−1∕2z ,

v
−1∕2
x  , v−1∕2z  , �−1∕2 , T0;

Receiver location (Rx, Rz), time of the recorded snapshot n.
Output:

Simulated wavefields at time slice n, qn+1∕2x  , qn+1∕2z  , vn+1∕2x  , vn+1∕2z  , Tn+1;
Waveforms of vx , vz,qx , qz and T at Receiver location (Rx, Rz).
1: for t = 0; t ≤ N ; t++ do
2: // update qx , vx , qz , vz with stresses at time t.

Update qt+1∕2x  and vt+1∕2x  , based on equations (27) and (28);

Update qt+1∕2z  and vt+1∕2z  , in the same manner as equations (27) and (28);

Output qn+1∕2x  , qn+1∕2z  , vn+1∕2x  , and vn+1∕2z  if n = t;
3: // update � with particle velocities, at both t + 1∕2 and t − 1∕2.
Update �m , �f  , �̇�m , �̇�f  using equation (25);
Update � t+1∕2 , based on equation (10);
4: // update T.
Tt+1=Tt+dt� t+1∕2;
Output Tn+1 , if n = t;
5: // update stresses with particle velocities and � , at t + 1∕2 and t − 1∕2.
Update �t+1

zz
 using equation (29);

Update �t+1
xx

 , �t+1
xz

 and pt+1 similarly;
6: end for
7: return vx , vz , qx , qz and T at location (Rx, Rz) for all t = 0 ∶ N.
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where FFT and IFFT are the forward and backward fast Fourier transforms, respectively, 
and kx and kz are the wavenumbers along x and z directions, respectively. A list of the algo-
rithm in pseudo-code form is given in Table 2.

The stability analysis for similar equations has been studied in Carcione and Quiroga-
Goode (1995), with a Von Neumann stability analysis based on the eigenvalues of the 
amplification matrix. The algorithm has first-order accuracy but possesses the stability 
properties of implicit algorithms and the solution can be obtained explicitly. Alternatively, 
implicit methods can also be used when the differential equations are stiff, but are more 
cumbersome to implement than explicit methods. The instability is mainly due to the pres-
ence of the quasi-static mode (the Biot slow wave). While the eigenvalues of the fast waves 
have a small real part, the eigenvalue of the Biot wave (in the quasi-static regime) has a 
large real part. Indeed, the simple explicit first-order accurate Crank–Nicolson scheme pro-
posed here provides an efficient scheme to deal with the stiffness, as shown in Carcione and 
Quiroga-Goode (1995).

References

Armstrong BH (1984) Models for thermoelastic in heterogeneous solids attenuation of waves. Geophysics 
49:1032–1040

Bear J, Sorek S, Ben-Dor G, Mazor G (1992) Displacement waves in saturated thermoelastic porous media, 
I Basic equations. Fluid Dyn Res 9(4):155–164

Berezovski A, Maugin GA (2001) Simulation of thermoelastic wave propagation by means of a composite 
wave-propagation algorithm. J Comput Phys 168(1):249–264

Berryman JG (1981) Elastic wave propagation in fluid saturated porous media. J Acoust Soc Am 
69(2):416–424

Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253
Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 

33(4):1482–1498
Budiansky B, Sumner EE Jr, OĆonnell RJ (1983) Bulk thermoelastic attenuation of composite materials. J 

Geophys Res Solid Earth 88(B12):10343–10348
Carcione JM (2014) Wave Fields in real media. Theory and numerical simulation of wave propagation in 

anisotropic, anelastic, porous and electromagnetic media. Elsevier, Amsterdam
Carcione JM, Cavallini F, Wang E, Ba J, Fu L (2019a) Physics and simulation of wave propagation in linear 

thermo-poroelastic media. J Geophys Res Solid Earth 124(8):8147–8166
Carcione JM, Gei D, Santos JE, Fu L, Ba J (2020) Canonical analytical solutions of wave-induced thermoe-

lastic attenuation. Geophys J Int 221(2):835–842
Carcione JM, Quiroga-Goode G (1995) Some aspects of the physics and numerical modeling of Biot com-

pressional waves. J Comput Acoust 3(04):261–280
Carcione JM, Wang Z, Ling W, Salusti E, Ba J, Fu L (2019b) Simulation of wave propagation in linear ther-

moelastic media. Geophysics 84(1):T1–T11
Dhaliwal RS, Sherief HH (1980) Generalized thermoelasticity for anisotropic media. Q Appl Math 

38(1):1–8
Green AE, Lindsay KE (1972) Thermoelasticity. J Elast 2(1):1–7
Gurevich B, Kelder O, Smeulders DMJ (1999) Validation of the slow compressional wave in porous media: 

Comparison of experiments and numerical simulations. Transp Porous Media 36(2):149–160

(30)

M,x = IFFT
[

FFT(M)ikxexp(ikxdx∕2)
]

, M = �xx, p, vz,

M,z = IFFT
[

FFT(M)ikzexp(ikzdz∕2)
]

, M = �zz, p, vx,

N,x = IFFT
[

FFT(N)ikxexp(−ikxdx∕2)
]

, N = �xz, vx, qx,

N,z = IFFT
[

FFT(N)ikzexp(−ikzdz∕2)
]

, N = �xz, vz, qz,

T,zz = IFFT
[

− k2
z
FFT(T)

]

,

T,xx = IFFT
[

− k2
x
FFT(T)

]

,



157Surveys in Geophysics (2021) 42:133–157 

1 3

Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stresses 22(4–5):451–476
Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, 

Oxford
Jacquey AB, Cacace M, Blöcher G, Scheck-Wenderoth M (2015) Numerical investigation of thermoelastic 

effects on fault slip tendency during injection and production of geothermal fluids. Energy Procedia 
76:311–320

Kelder O, Smeulders DMJ (1997) Observations of the Biot slow wave in water saturated Nivelsteiner sand-
stone. Geophysics 62(6):1794–1796

Norris A (1992) On the correspondence between poroelasticity and thermoelasticity. J Appl Phys 
71(3):1138–1141

Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 
15(5):299–309

Poletto F, Farina B, Carcione JM (2018) Sensitivity of seismic properties to temperature variations in a geo-
thermal reservoir. Geothermics 76:149–163

Rawal C, Ghassemi A (2014) A reactive thermo-poroelastic analysis of water injection into an enhanced 
geothermal reservoir. Geothermics 50:10–23

Rudgers AJ (1990) Analysis of thermoacoustic wave propagation in elastic media. J Acoust Soc Am 
88(2):1078–1094

Sharma MD (2008) Wave propagation in thermoelastic saturated porous medium. J Earth Syst Sci 
117(6):951–958

Singh B (2011) On propagation of plane waves in generalized porothermoelasticity. Bull Seismol Soc Am 
101(2):756–762

Wang Z, Fu L, Wei J, Hou W, Ba J, Carcione JM (2020) On the Green function of the Lord-Shulman ther-
moelasticity equations. Geophys J Int 220(1):393–403

Youssef HM (2007) Theory of generalized porothermoelasticity. Int J Rock Mech Min Sci 44(2):222–227

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Generalized Thermo-poroelasticity Equations and Wave Simulation
	Abstract
	1 Introduction
	2 Equations of Motion
	3 Particle Velocity–Stress–Temperature Formulation
	3.1 The Algorithms

	4 Physics and Simulations
	4.1 Comparison Between the Lord–Shulman and Green–Lindsay Theories
	4.2 Generalized Lord–Shulman Theory
	4.3 Heterogeneous Medium

	5 Conclusions
	Acknowledgements 
	References




