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S U M M A R Y
We analyse the reflection coefficient of an inhomogeneous plane wave incident on the thermally
insulated surface of a thermo-poroelastic medium. The theory, which includes the classic
Lord-Shulman (LS) and Green-Lindsay (GL) theories as well as a generalization of the LS
model, predicts three inhomogeneous longitudinal waves and one transverse wave, described
by potential functions specified by the propagation direction and inhomogeneity angle. The GL
model can give a stronger P1-wave thermal attenuation and consequently a stronger velocity
dispersion than the LS model. We investigate the influence of inhomogeneity angle, type
of incident wave, frequency and surface boundary conditions. The generalized LS model
exhibits increased P1-wave thermal attenuation with increasing Maxwell–Vernotte–Cattaneo
relaxation time and consequently predicts more interference energy, irrespective if the surface
is open or sealed. The inhomogeneity angle affects the energy partitions particularly near the
grazing incidence, with a significant interference energy, which must be taken into account
to satisfy the energy conservation. The thermal dispersion occurs at frequencies around the
thermal relaxation peak, which moves to low frequencies when the conductivity increases.

Key words: Elasticity and anelasticity; Numerical modelling; Seismic attenuation; Wave
propagation.

1 I N T RO D U C T I O N

Wave propagation in fluid-saturated high-pressure high-temperature fields, such as geothermal reservoirs, is affected by both the porous nature
of rocks and their thermal properties (e.g. Poletto et al. 2018; Carcione et al. 2019b). A quantitative investigation of wave propagation in
such fields, including reflections from the discontinuity interface is important to infer the medium properties, such as permeability, porosity
and thermal conductivity. This problem is relevant in a variety of fields, such as mechanics, thermodynamics, chemical engineering, and
geothermal and hydrocarbon exploration (Deresiewicz 1960; Sharma et al. 2003; Wei et al. 2016; Sharma 2018).

Biot (1956a, 1962) considered a medium saturated by a single viscous fluid and established the fundamental constitutive relations. The
theory predicts two compressional (P) waves and one shear wave. The second P wave is diffusive at low frequencies and wave-like at high
frequencies. This theory has been widely applied to study the reflection/transmission problem at various interfaces, including the contact
between two porous media (Deresiewicz & Rice 1964; Dutta & Odé 1983; Gurevich et al. 2004), a fluid/porous solid interface (Santos et al.
1992), and a layer of viscous fluid bounded by two porous saturated half-spaces (Markov et al. 2019).

The classical Biot theory cannot explain the high level of attenuation at the seismic frequency band. Many generalizations have been
developed, including two fluids (Santos et al. 1990; Lo et al. 2005), two solids (Carcione & Seriani 2001; Santos et al. 2004), and double
porosity (Pride et al. 2004; Ba et al. 2011, 2017). One of these models assumes that the porous medium consists of a frame saturated by
two immiscible fluids (Santos et al. 1990; Lo et al. 2005) and predicts an additional highly attenuated P wave. On the basis of this model,
the reflection and transmission coefficients at the interface between elastic and porous media (Tomar & Arora 2006), and two porous media
(Kumar & Sharma 2013) were investigated. Carcione & Seriani (2001) considered a composite two-mineral rock saturated by a single fluid.
The theory predicts three P waves and two S waves, and has been further generalized to the non-uniform porosity case (Carcione et al. 2003;
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Santos et al. 2004). Using this theory, Rubino et al. (2006) investigated the energy reflection and transmission at the interface between two
composite porous media. Pride & Berryman (2003a,b) proposed a double-porosity model, where the coupling between the rock deformation
and the mesoscopic local fluid flow (LFF) is introduced. This theory is an effective Biot model, and is used to obtain the reflection coefficient at
the interface between two porous media (Zhao et al. 2015), and the reflection of an inhomogeneous wave at the free surface (Liu et al. 2020b).
By combining the Rayleigh model of bubble oscillations with Biot theory of poroelasticity, Ba et al. (2011) proposed a double-porosity
model, where the process of wave-induced LFF is described by the liquid collapse on a spherical cavity. Sharma (2013) used this theory
to analyse the wave reflection at the free surface, while Wang et al. (2020) solved the reflection/transmission at the interface between two
double-porosity media. Guo & Gurevich (2020a,b) considered the coupling between wave-induced fluid flow and elastic scattering and studied
the frequency-dependent P-wave dispersion and attenuation anisotropy in rocks with aligned fractures.

On the other hand, thermoelastic attenuation is analogous to poroelastic attenuation, due to the conversion of the fast P wave to the
thermal wave (Carcione et al. 2020). Biot (1956b) pioneered the study and established a parabolic-type differential equation based on the
classical heat conduction theory, but it predicts unphysical solutions as a function of frequency, such as infinite velocities. Lord & Shulman
(1967) formulated more physical differential equations by adopting a hyperbolic-type heat equation involving a single relaxation time. This
theory yields a Maxwell-type attenuation kernel and predicts a wave-like propagation (finite velocity) at high frequencies. Green & Lindsay
(1972) used two relaxation times in the constitutive relations and proposed a different generalization. These theories predict two P waves and
an S wave. The second P wave is diffusive at low frequencies and wave-like at high frequencies (Rudgers 1990; Carcione et al. 2019b), in
analogy with the slow P wave of poroelasticity. Using the thermoelasticity theory, Deresiewicz (1957) performed a plane-wave analysis and
studied the effect of boundaries on the reflection by stress-free boundary (1960). Sinha & Elsibai (1996) studied the reflection of thermoelastic
waves at the free surface of a solid half-space in the context of the generalized theory with two relaxation times. A similar problem was
investigated by Sharma et al. (2003), and Kumar & Sarthi (2006) discussed the reflection and refraction of plane waves at an interface between
two thermoelastic media, but assumed no energy dissipation. Singh & Chakraborty (2013) studied the effects of initial stress on the reflection
and refraction coefficients of thermoelastic waves at a solid-liquid interface. More recently, Carcione et al. (2019b) proposed a numerical
method for simulating wave propagation in heterogeneous thermoelastic media based on the Fourier differential operator and an explicit
Crank-Nicolson time-integration method.

The thermo-poroelasticity theory describes the couplings between the stress components and the temperature field in porous media
(Sharma 2008; Carcione et al. 2019a). The dynamical equations predict three P waves, namely, a fast P wave, a slow Biot wave, and a slow
T (thermal) wave. The two slow waves present a diffusive behaviour under certain conditions, depending on the viscosity, frequency, and
thermoelasticity constants (Sharma 2008). Carcione et al. (2019a) derived a system of thermo-poroelasticity equations by combining Biot
equations of poroelasticity with those of Lord & Shulman (1967), and numerically solved it using a direct-grid algorithm. Wei et al. (2016)
studied the reflection and refraction at the interface between thermoelastic and thermo-poroelastic media, where the incident wave is lossless,
which is an approximation in the presence of thermal and fluid-related diffusion. Sharma (2018) studied the same problem but considered an
incident inhomogeneous wave.

A quantitative investigation of reflection at the surface of a thermo-poroelastic medium is important to understand the wave-propagation
effects. Since until now the subject has not been studied in detail, we consider a generalized medium described by a unified theory that
includes the classical LS and GL models, depending on the relaxation times involved. Moreover, we consider further generalization of
the LS model by using different values of the Maxwell–Vernotte–Cattaneo (MVC) relaxation times. The plane-wave solutions are based
on Helmholtz potential functions, and frequency-dependent phase velocities and dissipation factors are obtained. The conversion from
fast wave to slow and thermal waves induces energy losses and wave inhomogeneity, which means that the propagation and attenuation
directions do not coincide (Buchen 1971; Carcione 2006; Liu et al. 2020a). We consider an incident inhomogeneous wave based on
the complex velocity, and propagation and inhomogeneity angles. The reflection coefficients and energy partitions due to an obliquely
incident wave are obtained in closed form, on the basis of the boundary conditions at the surface. The examples illustrate the reflection
characteristics, as a function of the incidence angle, inhomogeneity angle, the frequency, and the type of incident wave. The results are
compared with those of the Biot theory to highlight the thermal effects, depending on the thermal mechanism (LS or GL) and thermal
properties.

2 G E N E R A L T H E R M O - P O RO E L A S T I C I T Y T H E O RY

The thermo-poroelasticity theory combines the equation of heat conduction with Biot’s equations of poroelasticity. It describes wave
propagation in thermally conducting porous media saturated with a viscous fluid. In the following, the generalized equations including both
the LS and GL models are established and the corresponding plane-wave response is analysed.

2.1 Basic equations

Considering a 2D isotropic medium, let us define the displacement field components of the frame: u = (ux , uz)T, the fluid displacement
relative to the frame: w = (wx , wz)T, the stress tensor components: σ ij, (i, j = x, z), the fluid pressure: p, and the increment of temperature field
above the reference absolute temperature T0,: T (T = T

′ − T0), where T
′
is the temperature. The generalized thermo-poroelasticity equations,
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Waves at the surface of a thermo-poroelastic medium 1623

including both the LS and GL theories, can be obtained with a modification of the model given in Carcione et al. (2019a) as follows,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σi j = 2μεi j + δi j (λεm + αMε) − δi jβ(T + τ1Ṫ ),

−p = Mε − β f

φ
(T + τ2Ṫ ),

ε = αεm + ε f , εi j = 1

2
(ui, j + u j,i ),

εm = ux,x + uz,z, ε f = wx,x + wz,z,

(1)

where δij is the Kronecker function, λ and μ are the Lamé constants of the dry rock, φ is the porosity, τ 1 and τ 2 are relaxation times
representing the dependence of the elastic behaviour on the temperature rate, and β and β f are coefficients of thermoelasticity of the bulk
material and fluid, respectively. The subindex ‘, i’ represents a spatial derivative and a dot above a variable denotes a time derivative. Carcione
et al. (2019a) considered τ 1 = τ 2 = 0, that is, eq. (1) corresponds to the LS theory. M is related to the elastic coupling between the solid and
fluid phases and α is the Biot effective stress coefficient,

M = Ks

1 − φ − Km/Ks + φKs/K f
, α = 1 − Km

Ks
(2)

(Carcione 2014), where Km = λ + 2
3 μ is the bulk modulus of the drained matrix, Ks and Kf are the bulk moduli of solid and fluid, respectively.

The equations of momentum conservation are (Carcione et al. 2019a){
σi j, j = ρüi + ρ f ẅi ,

−p,i = ρ f üi + mẅi + η

κ
ẇi ,

(3)

where m = T ρ f /φ, with T the tortuosity, η is the fluid viscosity, κ is the permeability of the medium, ρ f is the fluid density, and

ρ = (1 − φ)ρs + φρ f , (4)

is the composite density, with ρs the solid density.
The Fourier law of heat conduction is (Sharma 2018; Carcione et al. 2019a)

γ∇2T = c
(
Ṫ + τ3T̈

)+ T0β
[
(ε̇m + τ4ε̈m) + (

ε̇ f + τ4ε̈ f

)]
, (5)

where γ is the thermal conductivity, c is the specific heat of the unit volume in the absence of deformation, τ 3 and τ 4 are MVC relaxation
times, and ∇2 is the Laplacian operator. In the classical LS theory, τ 3 = τ 4 = τ is assumed (Carcione et al. 2019a).

In terms of the displacement vectors u, w and temperature T, equations (3) can be expressed as⎧⎨
⎩

(λ + μ + α2 M)∇εm + μ∇2u + αM∇ε f − β∇[T + τ1Ṫ ] = ρü + ρ f ẅ,

αM∇εm + M∇ε f − β f

φ
∇[T + τ2Ṫ ] = ρ f ü + mẅ + η

κ
ẇ.

(6)

Eqs (5) and (6) include both the classic Lord-Shulman (LS) and Green-Lindsay (GL) theories. The former is obtained by using τ 1 = τ 2

= 0, and τ 3 = τ 4 = τ , in which case, the equations become those of Carcione et al. (2019a), whereas the second with τ 4 = 0 and τ 1 = τ 2

(Sharma 2018). Ignaczak & Ostoja-Starzewski (2010, p. 23) show that, in the case of the GL model, the relation τ 1 = τ 2 ≥ τ 3 holds, and for
τ 1 = τ 2 = τ 3, the LS and GL theories coincide. In the present work, we also consider a generalization of the classical LS theory by using
different values of τ 3 and τ 4.

2.2 Plane-wave analysis

Using the Helmholtz decomposition, the displacement vectors u and w can be expressed in terms of two potentials, φ and �, as follows:

u = ∇φs + ∇ × �s, w = ∇φ f + ∇ × �f , (7)

where the subscripts ‘s’ and ‘f ’ refer to the solid and fluid phases, respectively.
Applying the divergence on both sides of eq. (6), we obtain⎧⎨

⎩
(λ + 2μ + α2 M)∇2εm + αM∇2ε f − β∇2[T + τ1Ṫ ] = ρε̈m + ρ f ε̈ f ,

αM∇2εm + M∇2ε f − β f

φ
∇2[T + τ2Ṫ ] = ρ f ε̈m + mε̈ f + η

κ
ε̇ f .

(8)

Since ∇ · �s = 0 and ∇ · �f = 0, applying the divergence on eq. (7), we have

εm = ∇2φs, ε f = ∇2φ f . (9)

Substituting eq. (9) into eqs (5) and (8), we obtain the system of equations for the propagation of compressional waves,⎧⎪⎪⎨
⎪⎪⎩

(λ + 2μ + α2 M)∇2φs + αM∇2φ f − β[T + τ1Ṫ ] = ρφ̈s + ρ f φ̈ f ,

αM∇2φs + M∇2φ f − β f

φ
[T + τ2Ṫ ] = ρ f φ̈s + mφ̈ f + η

κ
φ̇ f ,

γ∇2T = c
(
Ṫ + τ3T̈

)+ T0β
[(∇2φ̇s + τ4∇2φ̈s

)+ (∇2φ̇ f + τ4∇2φ̈ f

)]
.

(10)
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The plane-wave kernels for the potentials and temperature field are⎧⎪⎨
⎪⎩

φs = Asexp
[
i(kp · r − ωt)

]
,

φ f = A f exp
[
i(kp · r − ωt)

]
,

T = At exp
[
i(kp · r − ωt)

]
,

(11)

{
�s = Bsexp [i(ks · r − ωt)] ,

�f = B f exp [i(ks · r − ωt)] ,
(12)

where As, Af, At, Bs and Bf are the amplitudes, ω is the angular frequency, kp and ks are the wavenumbers of the compressional and shear
waves, respectively, and r is the spatial vector.

Substituting eq. (11) into eq. (10) and after a simplification, we obtain

H · A = 0, (13)

where, A = [As, A f , At ]T,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H11 = (λ + 2μ + α2 M)k2
p − ρω2,

H12 = αMk2
p − ρ f ω

2,

H13 = β(1 − iωτ1),
H21 = αMk2

p − ρ f ω
2,

H22 = Mk2
p − mω2 − iω

η

κ
,

H23 = β f

φ
(1 − iωτ2),

H31 = T0βk2
p(iω + τ4ω

2),
H32 = T0βk2

p(iω + τ4ω
2),

H33 = γ k2
p − c(iω + τ3ω

2).

(14)

Non-zero solutions for the compressional waves, are obtained if the determinant of H is zero, which yields the following dispersion
relation,

a6v
6
c + a4v

4
c + a2v

2
c + a0 = 0, (15)

where vc = ω/kp is the complex velocity,

a0 = iω2φγ M E,

a2 = ω
{
φ
[
bγ EG − iωγ (m EG + M(ρ − 2αρ f )) + cM E τ̄3

]
+βT0τ̄4

[
β f E τ̄2 + (1 − α)M(φβτ̄1 − αβ f τ̄2)

]}
,

a4 = −bφ
[
ωργ + icEG τ̄3 + iβ2T0τ̄1τ̄4

]+ ω
[
iωγφ(mρ − ρ2

f ) − cφτ̄3(m EG

+M(ρ − 2αρ f )) − βT0τ̄4[βφ(m − ρ f )τ̄1 + β f (ρ − ρ f )τ̄2]
]
,

a6 = cφτ̄3

[
ibρ − ω(ρ2

f − mρ)
]
,

(16)

where E = λ + 2μ, EG = E + α2 M, b = η

κ
, and τ̄l = 1 − iωτl .

By solving the cubic eq. (15), we obtain three physically meaningful roots v1, v2, and v3, corresponding to the velocities of the fast P
(P1), slow P (P2) and T waves, respectively. These velocities, being complex, describe also the attenuation properties. Particularly, if β = β f

= 0, we obtain the velocity for the decoupled thermal wave,

v3 =
√

γω

icτ̄3
. (17)

This indicates that the thermal wave is dissipative at low frequencies. On the other hand, the cubic eq. (15) becomes a quadratic one,

(ibρ + ωmρ − ωρ2
f )v4

c + (2ωαMρ f − ibEG − ωm EG − ωMρ)v2
c + ωM E = 0, (18)

which corresponds to the velocities of the fast and slow P waves.
The potential functions are⎧⎪⎨

⎪⎩
φs = φ1 + φ2 + φ3,

φ f = ν1φ1 + ν2φ2 + ν3φ3,

T = δ1φ1 + δ2φ2 + δ3φ3,

(19)
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Waves at the surface of a thermo-poroelastic medium 1625

Figure 1. Diagram of the reflection phenomenon at the surface of a generalized thermo-poroelastic medium. The solid and dashed arrows represent the
propagation and attenuation directions, respectively.

where the subscripts 1, 2, and 3 represent the fast, slow and T waves, respectively. Moreover, ν i and δi are related to the ratios Af/As and At/As,
specified with the complex velocity vi, and can be obtained with the superposition principle by solving eq. (13),⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νi = v2
i (ρβ f τ̄2 − ρ f φβτ̄1) + αMφβτ̄1 − EGβ f τ̄2

v2
i (φβτ̄1(m + ib

ω
) − β f ρ f τ̄2) + αMβ f τ̄2 − φMβτ̄1

,

δi = T0βτ̄4ω
2(1 + νi )

cτ̄3v
2
i + iγω

.

(20)

Applying the curl on both sides of eq. (6), we have,{
μ∇2�s − ρ�̈s − ρ f �̈f = 0,

ρ f �̈s + m�̈f + η

κ
�̇f = 0.

(21)

Solving eq. (21) with (12), we obtain,

�f = ν4�s, ∇2�s = 1

v2
4

�̈s, v4 =
√

μ

ρ + ρ f ν4
, ν4 = − ρ f

m + i
η

κω

, (22)

where we use index 4 to represent the shear wave (SV-wave). The attenuation of the shear wave is mainly induced by the Biot mechanism and
is not affected by the thermal effect.

Following Carcione (2014), the corresponding phase velocities and attenuation factors are given in terms of the complex velocity as,

Vi =
[

Re(
1

vi
)

]−1

, Qi = Re(v2
i )

Im(v2
i )

, i = 1, 2, 3, 4, (23)

where, “Re” and “Im” represent the real and imaginary parts of a complex variable.

3 R E F L E C T I O N AT T H E S U R FA C E

We study the propagation of the reflected waves induced by the incidence of an inhomogeneous wave at the surface of a generalized
thermo-poroelastic medium. A half-space occupied by the medium (z > 0) with surface defined at z = 0 is considered (Fig. 1).

3.1 Potential functions

The medium (z > 0) is saturated with viscous fluids and is thermally insulated, thus behaving anelastically. This implies that all the modes
(incident and reflected) are attenuated inhomogeneous waves. A general representation of an attenuated wave can be specified by its direction
of propagation as well as the direction of maximum attenuation (Carcione 2006, 2014). For an incident P wave (denoted with index 0), the
potentials and temperature are⎧⎪⎨
⎪⎩

φ(0)
s = A(0)

s exp [iω(p0x − q0z) − iωt)] ,

φ
(0)
f = ν0 A(0)

s exp [iω(p0x − q0z) − iωt)] ,

T (0) = δ0 A(0)
s exp [iω(p0x − q0z) − iωt)] ,

(24)

where A(0)
s is the amplitude, p0 and q0 are the horizontal and vertical complex slowness, ν0 and δ0 are the amplitude ratios, determined by

eq. (20), with the specific complex velocity v0 depending on the type of incident wave.
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1626 E. Wang et al.

For the SV-wave,{
� (0)

s = B(0)
s exp [iω(p0x − q0z) − iωt)] ,

�
(0)
f = ν0 B(0)

s exp [iω(p0x − q0z) − iωt)] ,
(25)

where B(0)
s is the amplitude, ν0 is the amplitude ratio, equal to ν4 given in eq. (22).

For a given propagation direction θ 0, the inhomogeneity angle γ 0 (angle between the attenuation and propagation directions, see Fig. 1)
and the complex velocity v0, the horizontal slowness p0 is defined as (Sharma 2013; Carcione 2014),

p0 = |P0|
ω

sinθ0 + i
|A0|
ω

sin(θ0 − γ0), (26)

with the propagation vector P0 and the attenuation vector A0 obtained from⎧⎪⎪⎨
⎪⎪⎩

2|P0|2 = ω2

[
Re(v−2

0 ) +
√(

Re(v−2
0 )
)2 + (

Im(v−2
0 )/cosγ0

)2
]

,

2|A0|2 = ω2

[
−Re(v−2

0 ) +
√(

Re(v−2
0 )
)2 + (

Im(v−2
0 )/cosγ0

)2
]

.

(27)

The vertical slowness is then

q0 = G R + iG I , G = ±pv
√

v−2
0 − p2

0, (28)

where pv represents the principal value of the complex quantity G, and GR and GI are the real and imaginary parts of G, respectively. In this
way, the negative sign in q0 ensures the propagation and energy decay of the wave along the negative z-direction.

The incident wave at the surface is reflected as P1, P2, T and SV waves. In the following, these four waves are represented with the
indices 1, 2, 3 and 4. The potential functions of the three compressional waves are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(r )
s =

3∑
i=1

φ(i)
s =

3∑
i=1

A(i)
s exp [iω(pi x + qi z) − iωt)] ,

φ
(r )
f =

3∑
i=1

φ
(i)
f =

3∑
i=1

νi A(i)
s exp [iω(pi x + qi z) − iωt)] ,

T (r ) =
3∑

i=1
T (i) =

3∑
i=1

δi A(i)
s exp [iω(pi x + qi z) − iωt)] ,

(29)

where pi and qi are the horizontal and vertical slowness, respectively. The quantities ν i and δi are the amplitude ratios and can be determined
from eq. (20) with the corresponding complex velocity vi.

The potential function of the reflected shear wave is{
� (r )

s = � (4)
s = B(4)

s exp [iω(p4x + q4z) − iωt)] ,

�
(r )
f = �

(4)
f = ν4 B(4)

s exp [iω(p4x + q4z) − iωt)] ,
(30)

where B(4)
s is the amplitude.

Invoking the Snell law (Carcione 2014), the horizontal slowness remains unchanged during the propagation, that is,

p1 = p2 = p3 = p4 = p0. (31)

Then, the vertical slowness can be obtained from the complex velocity vi as

qi = G R + iG I , G = ±pv
√

v−2
i − p2

i , i = 1, 2, 3, 4. (32)

Positive signs of qi in eqs (29) and (30) ensure the propagation and decay of the reflected waves along the positive z-direction (Borcherdt
1982).

3.2 Displacements and stresses

Substituting the potential functions into the Helmholtz eq. (7), we obtain the displacements vectors u and w as⎧⎪⎪⎨
⎪⎪⎩

u = (ux , uz)T = ∇ Hs +
[
−∂Gs

∂z
,
∂Gs

∂x

]T

,

w = (wx , wz)T = ∇ H f +
[
−∂G f

∂z
,
∂G f

∂x

]T

,

(33)

where Hi = σφ
(0)
i + φ

(r )
i , Gi = (1 − σ )� (0)

i + �
(r )
i , (i = s, f), and σ = 0 and 1 correspond to the incident P and SV waves, respectively.

The temperature field is then

T = σ T (0) + T (r ). (34)
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Waves at the surface of a thermo-poroelastic medium 1627

Using eq. (1), we obtain

σxx = (λ + α2 M)∇2 Hs + αM∇2 H f + 2μ

[
∂2 Hs

∂2x
− ∂2Gs

∂x∂z

]
− β(T + τ1Ṫ ),

σzz = (λ + α2 M)∇2 Hs + αM∇2 H f + 2μ

[
∂2 Hs

∂2z
+ ∂2Gs

∂x∂z

]
− β(T + τ1Ṫ ),

σxz = μ

[
2
∂2 Hs

∂x∂z
+ ∂2Gs

∂2x
− ∂2Gs

∂2z

]
,

p = −αM∇2 Hs − M∇2 H f + β f

φ
(T + τ2Ṫ ).

(35)

3.3 Reflection coefficients

At the surface (z = 0), the normal and tangential stresses σ zz and σ xz are zero. Other conditions specify the type of boundary, that is,
impermeable or permeable. For sealed pores (impermeable), no discharge of fluid is allowed, whereas for fully opened pores (permeable),
the fluid pressure in the pores vanishes (Sharma 2013). Furthermore, when the surface is thermally insulated, the gradient of T along the
z-direction is zero. Hence, the boundary conditions to be satisfied at the surface are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxz = 0,

σzz = 0,

ϑwz − (1 − ϑ)p = 0,
∂T

∂z
= 0,

(36)

where ϑ = 0 and 1 defines a permeable and impermeable boundary, respectively.
Combining eqs (33)–(35) with the boundary conditions, we obtain,

M · x = y, (37)

where x is the amplitude vector, defined by x =[A(1)
s , A(2)

s , A(3)
s , B(4)

s ]T. The expressions of the elements of M and y are given in Appendix A.
Solving eq. (37) (σ = 1 and 0 for the P and SV waves, respectively), we obtain the amplitude ratio

Xi =
{

xi/A(0)
s , σ = 1,

xi/B(0)
s , σ = 0,

(38)

where xi is the component of vector x. Xi can then be converted to the reflection coefficient as

Ri = Xi
ki

k0
= |Ri |eiθi , i = 1, 2, 3, 4, (39)

where ki and k0 are the wavenumbers of the reflected and incident waves, respectively. |Ri| is the reflection amplitude and the θ i defines the
phase angle.

4 E N E RG Y PA RT I T I O N S

Across a surface element of unit area, the scalar product of the surface traction and the particle velocity represents the energy flux E. The
time average of E over a period, denoted by 〈E〉, is the average energy intensity. Following Singh (2007) and Sharma (2013), the time average
of the product of real parts of the two complex functions f and F having forms as eqs (11) and (12) satisfies

〈Re(F) · Re( f )〉 = 1

2
Re(F f

′
), (40)

where 〈·〉 represents a temporal average over a period and the apostrophe is the complex conjugate. Therefore, at the interface, with a normal
along the z-direction, the averaged energy intensity of a wave in thermo-poroelastic media is (Sharma 2018)

〈E〉 = 1

2
Re(σzz u̇′

z + σxz u̇′
x − pẇ′

z). (41)

The energy intensity is computed with the stress and particle-velocity components associated with the incident and four reflected waves.
Therefore, the energy partitions can be obtained by solving a matrix system of order five as follows:

〈E〉 = 〈Ei j 〉 = 1

2
Re(C5×3 · Ḋ′

3×5), i, j = 0, 1, 2, 3, 4, (42)
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1628 E. Wang et al.

Table 1. Medium properties.

Grain bulk modulus, Ks 35 GPa
Density, ρs 2650 kg m−3

Frame bulk modulus, Km 1.7 GPa
Shear modulus, μ 1.885 GPa
Porosity, φ 0.3
Permeability, κ 1 darcy
Tortuosity, T 2
Water density, ρf 1000 kg m−3

Viscosity, η 0.001 Pa s
Bulk modulus, Kf 2.4 GPa
Thermoelasticity coefficient, β f 0.8 ×106 kg m−1 s−2 ◦K−1

Bulk specific heat, c 1.8 ×106 kg m−1 s−2 ◦K−1

Thermoelasticity coefficient, β 2.4 ×106 kg m−1 s−2 ◦K−1

Absolute temperature T0 300 ◦K
Thermal conductivity, γ 4.5 m kg s−3 ◦K−1

Relaxation time, τ 1 0.3 ns
‘’ , τ 2 0.3 ns
‘’ , τ 3 0.15 ns
‘’ , τ 4 0.15 ns

where

C5×3 =

⎛
⎜⎜⎜⎜⎜⎝

σ (0)
zz σ (0)

xz −p(0)

σ (1)
zz σ (1)

xz −p(1)

σ (2)
zz σ (2)

xz −p(2)

σ (3)
zz σ (3)

xz −p(3)

σ (4)
zz σ (4)

xz −p(4)

⎞
⎟⎟⎟⎟⎟⎠ , D3×5 =

⎛
⎜⎝u(0)

z u(1)
z u(2)

z u(3)
z u(4)

z

u(0)
x u(1)

x u(2)
x u(3)

x u(4)
x

w(0)
z w(1)

z w(2)
z w(3)

z w(4)
z

⎞
⎟⎠ . (43)

The diagonal entries 〈Eii 〉 identify the energy fluxes of the incident wave, and the reflected P1, P2, T and SV waves, whereas the
off-diagonal entries are the interference energy fluxes. The energy fluxes are scaled to that of the incident wave 〈E00〉 to obtain the energy
ratios as

E Ri j = 〈Ei j 〉/〈E00〉, i, j = 0, 1, 2, 3, 4. (44)

The interference energy ratio of the incident wave with the four reflected waves is

E Rir =
4∑

i=1
(E Ri0 + E R0i ). (45)

Similarly, the corresponding interference energy ratio among the four reflected waves is

E Rrr =
4∑

i=1

(
4∑

j=1
E Ri j − E Rii

)
. (46)

With the above definitions, the energy conservation at the surface is guaranteed, that is,

E Rcons =
4∑

i=1
E Rii + E Rir + E Rrr = −1. (47)

5 E X A M P L E S

We consider the properties given in Table 1, taken from Carcione et al. (2019a) except for the thermoelasticity properties β f, β, c, γ and
relaxation times. The relation � = β/c defines the dimensionless Grüneisen ratio and is equal to 1.33, corresponding to a rock (Anderson
2000).

Fig. 2 shows the variations in phase velocities and dissipation factors as a function of frequency. The fast P1 wave has two relaxation
peaks at approximately 10 kHz and 1 GHz. The former is caused by the Biot mechanism and induces velocity dispersion of the P1 and P2
waves. The later one is caused by the thermal effect, which only affects propagation at high frequencies. In comparison with the LS theory,
the GL model predicts a higher P1-wave thermal attenuation, and consequently a more pronounced velocity dispersion. The P2 and T waves
are dissipative at low frequencies and wavelike at high frequencies. Beyond the thermal relaxation frequency, the GL theory gives a higher
P2-wave velocity than that of the LS model, whereas the opposite behaviour is observed for the velocity of the T wave. Compared with the
classical Biot theory, the thermoelasticity equations predict a higher velocity of the fast P1 wave for all frequencies and a faster propagation
of the slow P2 wave at high frequencies. It is evident that the thermal effects affect the wave propagation and consequently the reflection at
the surface. In the following, to highlight the thermal effect as well as the differences between LS and GL models, we consider an incident
wave with a frequency of 1 GHz that corresponds to the thermal relaxation peak.
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Waves at the surface of a thermo-poroelastic medium 1629

Figure 2. Phase velocities and dissipation factors of the three compressional waves as a function of frequency. The red, black and blue lines correspond to the
results of the GL theory, LS theory and the Biot theory, respectively.

Figure 3. Reflection amplitudes as a function of the incidence angle (incident P1 wave). The red and black lines correspond to sealed and open boundaries,
whereas the dashed and solid lines to the results of LS and GL theories, respectively. The blue lines correspond to results of the Biot theory. The subindices 1,
2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

5.1 P1-wave incidence

Figs 3 and 4 show the reflected amplitudes and phases, respectively, as a function of the incidence angle in the case of an incident P1 wave
with a 1 GHz frequency and γ 0 = 45◦. With the same boundary (open or sealed), the GL theory predicts higher amplitudes of the reflected P1
wave than the LS theory, and a slightly weaker reflected SV-wave amplitude, whereas the classical Biot theory predicts the opposite effect. At
normal incidence, no shear wave is reflected, and the magnitude of the reflected P1 wave is almost 1, whereas the phase difference with respect
to the incidence wave is π , indicating that the phenomenon of half-wave loss occurs, as in the case of reflection from the surface of an elastic
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1630 E. Wang et al.

Figure 4. Phases as a function of the incidence angle (incident P1 wave), corresponding to Fig. 3.

Figure 5. Energy partitions as a function of the incidence angle (incident P1 wave), corresponding to Fig. 3.

solid. The deviation of the P1-wave magnitude from 1 at normal incidence is due to the conversion to slow P and T waves. The boundary
conditions at the interface affect the reflection behaviour. Compared to the sealed boundary, the open boundary yields higher amplitudes of
the reflected P1 and T waves, but lower amplitude of the reflected SV wave. The Biot theory yields the smallest P2-wave magnitudes when
the surface is sealed and the opposite response at large incidences is observed when the surface is open. The GL model predicts continuous
P-wave and SV-wave phase variations with incidence angle, unlike the Biot and LS models.

Fig. 5 shows the energy partitions, where the main energy is shared by the P1 and SV waves. The P1-wave energy decays (in absolute
value) as the angle increases from normal incidence. After a minimum at nearly 60◦, the energy increases until grazing incidence. In agreement
with the amplitudes, the GL model has a higher P1-wave absolute energy ratio than the LS theory, whereas the Biot theory predicts the
smallest value. The open boundary strengthens the energy in comparison with the sealed surface. The opposite behaviour is observed for the
reflected SV wave, which indicates energy conversion at the surface.
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Waves at the surface of a thermo-poroelastic medium 1631

Figure 6. Reflection amplitudes as a function of the incidence angle (incident SV wave). The red and black lines correspond to sealed and open boundaries,
whereas the dashed and solid lines to the LS and GL theories, respectively. The blue lines correspond to results of the Biot theory. The subindices 1, 2, 3 and 4
refer to the fast P, slow P, T and S waves, respectively.

Near normal incidence, the GL model predicts a higher P2-wave energy ratio than the LS one, whereas the Biot theory exhibits
the smallest value in the case of a sealed boundary. The behaviour is opposite at high incidence angles when the boundary is open. The
T wave exhibits a much weaker energy, with the GL theory predicting more energy than the LS one, and the open boundary induces more
energy, in agreement with the T-wave amplitude. The interference energy corresponding to the GL theory is high near grazing incidence,
indicating that more energy conversion occurs. The LS theory predicts almost zero interference energy for all incidence angles as the
classical Biot theory, due to the negligible thermal attenuation. The sum of all the ratios is −1, which implies the energy conservation at the
surface.

5.2 SV-wave incidence

Next, an incident SV wave is considered. Figs 6 and 7 show the reflection amplitudes and phase versus incidence angle, and Fig. 8 shows
the energy partitions, respectively. The reflection differences are mainly significant at the peaks and minima. The GL model predicts a lower
P1-wave amplitude than the LS one, whereas the classical Biot theory exhibits the highest value. Compared with the open boundary, the
sealed one predicts higher P1- and SV-wave amplitudes near the first maximum and a lower P2-wave amplitude. The opposite behaviour is
observed at the second maximum. The GL model yields increased T-wave amplitude than the LS one. The significant thermal attenuation of
the GL model induces quite different SV-wave phases compared to those of the LS and Biot models for both boundaries.

Because the SV wave has a lower velocity than the P1 wave, there exists a critical angle. The LS theory predicts a very low attenuation
(see Fig. 2) and the medium behaves elastic at 1 GHz. In this case, for incidences beyond the critical angle, the reflected P1 wave propagates
along the interface and carries no energy vertically. ER11 then becomes zero (dashed lines in Fig. 8). A critical angle at around 25◦ can be
seen. On the other hand, the GL theory predicts significant attenuation and hence the P1 wave is still reflected back into the medium due
to the dissipation. In fact, beyond 25◦ the reflected P1 wave carries energy vertically, decreasing gradually towards grazing incidence. The
energy of reflected SV wave is affected correspondingly, with an energy-ratio increasing to 1 (in absolute value) in the case of the LS theory
(the red dashed line). The same phenomenon has been illustrated by Sharma (2013), who studied the reflection of inhomogeneous waves at
the surface of a double-porosity medium.

The LS model predicts a higher P1-wave energy peak than the GL theory, and the sealed boundary further contributes. The P2 wave
exhibits the same order of amplitudes of the P1 and SV waves. As above, the T wave has a very low energy. The GL model predicts more
interference energy than the LS one for both, open and sealed boundaries, which implies that more significant energy conversion occurs.
The sealed boundary predicts a negative interference energy, but the conservation at the interface is satisfied. A similar phenomenon was
observed at the surface of a double-porosity medium (Sharma 2013). As a contrast, the Biot theory gives no interference energy for all
incidences.
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1632 E. Wang et al.

Figure 7. Phases as a function of the incidence angle (incident SV wave),corresponding to Fig. 6.

Figure 8. Energy partitions as a function of the incidence angle (incident SV wave), corresponding to Fig. 6.

5.3 Generalized LS theory

The classical LS theory assumes τ 3 = τ 4 = τ . In this section, we generalize this theory by assuming different values of these relaxation times.
Numerical analysis shows that τ 4 < τ 3 predicts negative attenuation, and therefore wave propagation is unstable. As a contrast, if τ 4 ≥ τ 3,
the propagation is stable and can be used to generalize the LS theory.

Fig. 9 shows the phase velocities and dissipation factors of the three compressional waves as a function of frequency, with three different
values of τ 4. We observe that increasing τ 4 implies a higher P1-wave thermal attenuation, and consequently more velocity dispersion, while
the relaxation frequency remains unchanged. Correspondingly, the P2- and T-wave velocities increase and decrease at high frequencies,
respectively. Particularly, for τ 4 = 0.3 ns, the phase velocity and dissipation factor are in good agreement with those of the GL model given
in Fig. 2. It is clear that by varying τ 4, we can obtain different levels of attenuation.
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Waves at the surface of a thermo-poroelastic medium 1633

Figure 9. Phase velocities and dissipation factors of the three compressional waves as a function of frequency for the generalized LS theory with different
values of τ 4.

Figure 10. Reflection amplitudes as a function of the incidence angle (incident P1 wave) for the generalized LS theory with different values of τ 4. The dashed
and solid lines correspond to sealed and open boundaries, respectively. The subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

Figs 10 and 11 show the reflection amplitudes and energy ratios versus incidence angle in the case of an incident P1 wave. Increasing
τ 4 increases the P1 and T amplitudes, irrespective if the surface is open or sealed. The opposite behaviour is noted for the reflected SV wave.
The energy ratios show similar variations. The interference energy near the grazing incidence is significantly strengthened as τ 4 increases for
both the sealed and open boundaries, showing a similar behaviour of the GL model. Note that for τ 3 = τ 4 = 0.15 ns, the interference energy
is negligible for all incidence angles.
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1634 E. Wang et al.

Figure 11. Energy partitions as a function of the incidence angle (incident P1 wave) for the generalized LS theory with different values of τ 4. The dashed and
solid lines correspond to sealed and open boundaries, respectively. The subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

6 D I S C U S S I O N

6.1 Effect of the inhomogeneity angle

The inhomogeneity angle γ 0 ∈ ( − π /2, π /2) is the angle between the attenuation and propagation directions, as illustrated in Fig. 1. In the
case of incident P1 wave, as shown in Fig. 2, the LS theory predicts a negligible thermal attenuation, which implies that Re(v2

0)/Im(v2
0) ≈ ∞.

This leads to the following approximations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2|P0|2 = ω2Re(v−2
0 )

⎡
⎣1 +

√
1 +

(
Im(v−2

0 )

Re(v−2
0 )cosγ0

)2
⎤
⎦ ≈ 2ω2Re(v−2

0 ),

2|A0|2 = ω2Re(v−2
0 )

⎡
⎣−1 +

√
1 +

(
Im(v−2

0 )

Re(v−2
0 )cosγ0

)2
⎤
⎦ ≈ 0.

(48)

In this case, the horizontal wavenumber p0 becomes real and independent of γ 0. The reflection amplitudes obtained with the LS theory
for open and sealed boundaries further validate this. In contrast, the GL model yields a non-negligible thermal attenuation and the attenuation
vector A0 in eq. (48) becomes significant, particularly when γ 0 is relative high (close to ± 90◦). Thus, the reflection behaviour depends on γ 0.

Fig. 12 shows the reflection amplitudes versus incidence angle for sealed and open boundaries and five different inhomogeneity angles.
When γ 0 = 0◦, the incident wave is homogeneous. Note that the three results, with γ 0 = 0◦, − 40◦ and +40◦, overlap. This implies that at
relatively low γ 0, the reflection amplitudes are similar. The main reason is that the variation in Im(v−2

0 )/
[
Re(v−2

0 )cosγ0

]
in eq. (48) is very

small. However, this term contributes for high γ 0. For example, for γ 0 equal to 0◦ , 45◦ and 80◦, this term is 0.04, 0.06 and 0.25, respectively,
which in turn implies a significantly increased attenuation factor A0, and consequently a substantial deviation from the reflection behaviour
at γ 0 = 0◦. With a high γ 0 (in absolute value, +80◦or −80◦), the P1-wave amplitude close to the normal incidence increases. The opposite
behaviour is observed at the peak, with +80◦giving a more significant decrease than −80◦.

The influence of γ 0 on the SV wave is significant for almost all incidence angles. In the case of high γ 0 (in absolute value, +80◦or
−80◦), the SV-wave amplitude increases. The effect is most evident at normal and grazing incidences. Particularly, the SV-wave amplitude at
normal incidence becomes non-zero, which is quite different from the behaviour for a low γ 0. The main reason is due to the high attenuation
induced by the high inhomogeneity angle. The influence on the T wave is only important at angles close to the grazing incidence, where a
high absolute value of γ 0 causes a higher amplitude. The effect on the P2-wave amplitude is only important when the surface is open and
the inhomogeneity angle is high, say 80◦ in absolute value. The influence of γ 0 on the energy partitions is significant, as shown in Fig. 13,
particularly at angles close to grazing incidence. At these angles, a high γ 0 causes increased energy ratios of the reflected P2, T and SV waves,
and consequently more interference energy, implying that more energy conversion occurs.
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Waves at the surface of a thermo-poroelastic medium 1635

Figure 12. Reflection amplitudes as a function of the incidence angle (incident P1 wave) for the GL theory with different values of γ 0. The dashed and solid
lines correspond to open and sealed boundaries, respectively. The subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

Figure 13. Energy partitions as a function of the incidence angle (incident P1 wave) for the GL theory with different values of γ 0. The dashed and solid lines
correspond to open and sealed boundaries, respectively. The subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

Liu et al. (2020b) studied the reflection at the surface of an effective Biot solid, where they expressed the plane wave using the
inhomogeneity parameter D instead of γ 0. The relation between D and γ 0 is

cosγ0 = ±1√
1 + D2

[Im(v−1
0 )]2

.
(49)

It is evident that γ 0 increases with D. Particularly, if D = ∞, γ 0 becomes ± 90◦. Liu et al. (2020b) obtained significant P2- and SV-wave
energies and also more interference energy near grazing incidence, when using a high D. This is consistent with our results.
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1636 E. Wang et al.

Figure 14. Reflection amplitudes as a function of frequency with a 60◦ incidence angle (incident P1 wave). The black and red lines correspond to open and
sealed boundaries, whereas the solid and dashed lines to the GL and LS models, respectively. The blue lines correspond to results of the Biot theory. The
subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S waves, respectively.

Figure 15. Reflection energy partitions as a function of frequency, corresponding to Fig. 14. The subindices 1, 2, 3 and 4 refer to the fast P, slow P, T and S
waves, respectively.

The incident SV wave is not attenuated by the thermal effect at high frequencies, and hence the reflections at the surface remain unaffected
by the inhomogeneity angle, as in the case of P1-wave incidence based on the LS model.

6.2 Effect of frequency

The frequency-dependent velocities given in Fig. 2 imply that the reflections at the surface are frequency-dependent. As an example, we show
the case of an incident P1 wave. Figs 14 and 15 show the reflection amplitudes and energy ratios as a function of frequency for θ 0 = 60◦ and
γ 0 = 45◦. The GL model predicts frequency-dependent P1-, P2- and SV-wave amplitudes and energy ratios, irrespective if the surface is open
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Waves at the surface of a thermo-poroelastic medium 1637

Figure 16. Phase velocities and dissipation factors of the P1 and T waves as a function of frequency calculated with the GL model. The black lines correspond
to the GL model with γ and τ i (i = 1,2,3) given in Table 1, whereas the blue and red lines to results with γ and τ i multiplied by 103 and 106, respectively.

or sealed, whereas the LS and Biot models do not. On the frequency band [0.1, 10] GHz and for both boundaries, the amplitudes and energies
of the P1 and T wave increase, whereas those of the SV wave decrease, compared to the results of the LS model. As a consequence, the
interference energy is enhanced. Note that the interference energy predicted by the LS model is close to zero for almost all frequencies. The
Biot theory exhibits different amplitudes and energy partitions for the two boundaries, since the P1-wave propagation velocity is different. Its
interference energy is zero at all frequencies.

The reflection dispersion is mainly induced by the thermal attenuation. With increasing τ 4 (higher than τ 3), the generalized LS model
predicts a higher thermal attenuation, which induces reflection dispersion as the GL model. According to Carcione et al. (2019b), the thermal
relaxation frequency depends on the values of γ and τ i. In the classical LS thermoelasticity theory (τ = τ 3 = τ 4), the thermal relaxation peak
location is

f p ≈ 1

2πτ
, (50)

where τ = γ /(cv2), with v = √
(λ + 2μ)/ρ the isothermal phase velocity. Thus, increasing γ (or τ ), the peak moves to low frequencies.

Fig. 16 shows that increasing γ (or equivalently τ i) also moves the thermal relaxation peak of the GL model to the low frequencies. In
real applications, γ ranges from 24000 m kg s−3 ◦K−1 for CRC aluminium to 0.023 m kg s−3 ◦K−1 for air, whereas rocks filled with
fluids have a range between 1 and 12 m kg s−3 ◦K−1. Carcione et al. (2019b) obtained a relaxation peak at seismic frequencies with γ =
4.5 ×106 m kg s−3 ◦K−1, for a better illustration of the physics. If a similar γ is used here, the reflection dispersion is significant at low
frequencies.

7 C O N C LU S I O N S

We consider a unified thermo-poroelasticity theory, including the GL and LS models and a generalized LS model, to compute the reflection
coefficient of an incident inhomogeneous plane wave on a thermally insulated surface. The results show that the GL model predicts a
significantly higher P1-wave thermal attenuation than the classical LS model and consequently induces more interference energy, implying
that more energy conversion occurs. The generalized LS model predicts enhanced P1-wave thermal attenuation with increasing MVC
relaxation time, and gives more interference energy, similar to the GL model. In the presence of strong thermal attenuation, the inhomogeneity
angle affects the energy partitions, particularly near grazing incidence, where the interference energy is enhanced for high inhomogeneity
angles. Reflection dispersion mainly occurs at frequencies near the thermal relaxation frequency, which moves to low frequencies when the
thermal conductivity increases.

In thermally insulated rocks, the temperature variation induced by the passage of P wave provides the gradient from which thermal
dissipation and attenuation occur. The conversion from P wave to thermal wave induces energy transfer, causing wave-induced thermo-
poroelastic attenuation of the fast P wave in analogy with wave-induced fluid-flow attenuation due to the conversion to Biot slow wave.
The reflection dispersion due to thermo-poroelastic attenuation cannot be ignored because the classical Biot-type interpretation might be
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misleading, particularly for high-temperature high-pressure fields. The approach can be generalized to the case of anisotropic thermo-
poroelasticity in a future study.
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A P P E N D I X A : C O M P O N E N T S O F M A N D y

The components of matrix M are

M11 = 2p1q1, M12 = 2p2q2, M13 = 2p3q3,
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4 − q2
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The components of y are
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