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ABSTRACT

We have investigated the anelastic dispersion and attenu-
ation of P- and SV-wave scattering by nonisothermal inclu-
sions of finite thickness. The inclusions, which are aligned
and sparsely embedded in an isotropic medium, induce an
initial static stress field (acoustoelasticity) and a nonlinear
dependence of the velocities on this stress. Moreover, we
describe the anelastic properties as a function of frequency
by incorporating the displacement discontinuities across the
inclusion into the representation theorem by using the Foldy
approximation. The response as a function of temperature is
calculated for different incidence angles (anisotropy), and
the results find that anelasticity increases with an increasing
temperature difference between the inclusions and the back-
ground medium. The SV wave in the solid inclusions indi-
cates a stronger sensitivity along the inclusion normal, and it
is more affected than the P wave. The P- and SV-wave scat-
tering by fluid-saturated inclusions behave in an opposite
manner. This theory can be useful to evaluate the distribution
of temperature from seismic attributes.

INTRODUCTION

Thermoelastic stress produced by a nonuniform temperature dis-
tribution within the earth is recognized as an important source of
stress that affects its tectonic history. The effects of thermoelastic
stress have been identified in media with inclusions. It is found that
the geoid profiles of fracture zones show significant bending due
to thermoelastic stress (Parmentier and Haxby, 1986; Haxby and
Parmentier, 1988). The thermoelastic stresses resulting from thermal

anomalies can alter the permeability of the rock (e.g., Patterson et al.,
2018). Seismic prospecting is extensively used to image these inclu-
sions and also provide information about their pressure-temperature
conditions. Therefore, it is important to study the effects of those
stresses, associated with temperature distributions, on seismic attrib-
utes, especially the dispersion and attenuation of seismic waves.
Many models have been proposed for seismic dispersion and at-

tenuation in heterogeneous media. Early works focus on elastic scat-
tering by a single dry inclusion in an isotropic homogeneous medium
(e.g., Mal, 1970a, 1970b; Martin, 1981; Krenk and Schmidt, 1982).
Many papers accurately describe the scattering processes in isotropic
or anisotropic media (e.g., Crampin, 1978; Sánchez Sesma and
Iturrarán Viveros, 2001). Based on the Foldy approximation (Foldy,
1945), the elastic scattering by a set of randomly and homogeneously
distributed dry inclusions has been investigated (e.g., Kikuchi, 1981;
Yamashita, 1990; Kawahara, 1992). This approach has been used to
develop several models for wave scattering by aligned fluid-saturated
inclusions in nonporous (e.g., Kawahara and Yamashita, 1992; Guo
et al., 2018b) and porous media (e.g., Galvin and Gurevich, 2006;
Song et al., 2017; Fu et al., 2018, 2020; Guo et al., 2018a).
Elastic scattering and thermoelasticity are two distinct wave dissi-

pation mechanisms (Aki, 1980; Sato et al., 2012). Thermoelasticity
describes the coupling between elastic deformation and temperature,
by which temperature fluctuations lead to wave dissipation (Biot,
1956). This theory is relevant in geothermal exploration (e.g.,
Armstrong, 1984; Cermak et al., 1990; Fu, 2012, 2017) and earth-
quake seismology (e.g., Simmons and Brace, 1965; Boschi, 1973).
The classic theory, based on a parabolic-type equation of heat con-
duction, predicts unphysical solutions, that is, infinite velocities. The
Lord-Shulman model avoids this problem (Lord and Shulman, 1967)
by introducing a relaxation time into the heat-conduction equation.
Rudgers (1990) analyzes the theory of wave propagation, and
Carcione et al. (2018, 2019) compute synthetic seismograms based
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on this model, the latter being a generalization to the poroelastic case.
The corresponding frequency-domain Green function has been de-
rived by Wang et al. (2019) and Wei et al. (2020a). Moreover, Wei
et al. (2020b) study the thermoelastic dispersion and attenuation of
P- and SV-wave scattering by aligned inclusions in an isothermal elas-
tic medium. Wei et al. (2022) recently investigated the coupling be-
tween a wave-induced thermal flux and elastic scattering based on the
Lord and Shulman equations of dynamic thermoelasticity.
A medium with a nonuniform temperature distribution can be sub-

jected to a prestressed environment induced by thermoelastic stress
(e.g., Parmentier and Haxby, 1986; Zhu and Wiens, 1991; Patterson
et al., 2018). The seismic wave velocity of most cracked rocks is very
sensitive to initial static stress (Cheng and Toksöz, 1979; Zimmerman
et al., 1986). A theory called acoustoelasticity describes the stress-
induced variations in elastic-wave velocity through the third-order
elastic constants, which can be estimated from the slope obtained
by a linear relationship law between the elastic moduli and applied
stress (Winkler and Liu, 1996; Winkler and McGowan, 2004). Prioul
et al. (2004) calculate the third-order elastic constants in the low- and
high-prestressed environment, respectively, demonstrating higher
third-order elastic constants at low stress. The nonlinear relation be-
tween the rock elastic modulus and the loaded pressure due to
mechanical defects (such as microstructure) has been well demon-
strated by experimental measurements (e.g., Johnson and McCall,
1994; Sinha and Plona, 2001; David and Zimmerman, 2012).
We describe the elastic deformation of nonisothermal inclusions

by combining the thermoelasticity and acoustoelasticity theories to
model wave scattering. First, we obtain the stresses from a 2D rec-
tangular inclusion. Then, we follow Wei et al. (2020b) and estimate
the dispersion and attenuation of the P and SV waves induced by the
displacement discontinuities in inclusions constrained by the acous-
toelasticity boundary condition as a result of thermoelastic stresses.
Finally, the variation of these properties with regard to temperature
and incidence angle is analyzed.

MODEL FORMULATION

Wei et al. (2020b) investigate the P- and SV-wave scattering by the
aligned isothermal fluid-saturated inclusions of finite thickness. The

model of inclusions extends the model of Kawahara (1992) to the
case of wet cracks and that of Guo et al. (2018b) to include shear
waves. In this study, we extend the model to the nonisothermal in-
clusions containing solid or fluid with a negligible background poros-
ity. The model is shown in Figure 1, where the number of aligned
inclusions per unit area, called inclusion number density ν, is small.
The 3D problem can be reduced to a 2D problem if we assume that all
of the inclusions are parallel to the x1-axis but infinitely long along
the x3-axis. An incident plane wave of angular frequency ω at an
angle φ (or ϕ) with respect to the x2-axis is considered. The theory
includes not only the conventional scattering mechanism but also the
acoustoelasticity effect caused by thermoelastic stresses across the
inclusion boundaries.

Thermoelastic stresses from a 2D rectangular inclusion

The stress components σij of a thermoelastic medium are (Biot,
1956; Carcione et al., 2020; Wei et al., 2020b)

σij ¼ λδijθ þ μui;j þ μuj;i − ð3λþ 2μÞαδijT; (1)

where λ and μ are the Lamé constants, δij is the Kronecker-delta
components, θ is the volumetric strain, ui is the displacement com-
ponent, T is the increment of temperature above a reference abso-
lute temperature T0, and α is the coefficient of thermal expansion.
Substituting equation 1 into the equations of equilibrium yields

ðλþ μÞθ;i þ μui;jj − ð3λþ 2μÞαT;i ¼ 0: (2)

Introducing the thermoelastic displacement potential Ψ;i ¼ ui,
equation 2 becomes

ðλþ 2μÞΨ;ijj ¼ ð3λþ 2μÞαT;i: (3)

Integrating equation 3 with respect to xi, we obtain

�
∂2

∂x21
þ ∂2

∂x22
þ ∂2

∂x23

�
Ψ ¼ 3λþ 2μ

λþ 2μ
αT: (4)

Similarly, the 2D thermoelastic displacement
potential is

�
∂2

∂x21
þ ∂2

∂x22

�
Ψ ¼ 3λþ 2μ

2ðλþ μÞ αT: (5)

Based on the displacement potentialΨ;i ¼ ui and
equation 4, the stress components σij can be
transformed to

σij ¼ 2μðΨ;ij − Ψ;kkδijÞ: (6)

Assuming that the temperature difference T ¼
TðiÞ − T0 between the inclusion and surrounding
medium is constant, and the internal and external
elastic properties and thermal expansion coeffi-
cients are the same within a certain temperature
range, equation 5 becomes

Figure 1. Sparsely and homogeneously nonisothermal aligned inclusions of the same
shape embedded in an isotropic elastic medium. These solid/fluid-saturated inclusions
are parallel to the x1-axis but infinitely long along the x3-axis, have thickness h and half-
length a, and are centered at ðp1; p2Þ, the origin of the local coordinate system ðx1; x2Þ.
Symbol u0 denotes an incident harmonic plane wave P (or SV) at an angle φ (or ϕ)
measured from the x2-axis. A similar model has been used by Kawahara (1992) with
aligned dry open cracks, Guo et al. (2018b) with aligned fluid-saturated cracks of finite
thickness, and Wei et al. (2020b) with aligned isothermal fluid-saturated inclusions of
finite thickness.
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�
∂2

∂x21
þ ∂2

∂x22

�

Ψ¼

8><
>:

3λþ2μ
2ðλþμÞαT; −a<x1<a and −h

2
<x2<

h
2

0; x1h−aor x1iaor x2
D
−h

2
orx2

E
h
2

: (7)

According to the potential theory, the particular solution to equa-
tion 7 is

Ψðx1; x2Þ ¼
3λþ 2μ

4πðλþ μÞ αT
Z

a

ξ1¼−a

Z h
2

ξ2¼−h
2

ln rdξ1dξ2; (8)

where r2 ¼ ðx1 − ξ1Þ2 þ ðx2 − ξ2Þ2:
By substituting this solution into equation 6, we obtain the

following thermoelasticity stress components:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

σT11¼− 3λþ2μ
2ðλþμÞ

αTμ
π

��
tan−1 x1−a

x2−h
2

− tan−1 x1þa
x2−h

2

�
−
�
tan−1 x1−a

x2þh
2

− tan−1 x1þa
x2þh

2

��

σT22¼− 3λþ2μ
2ðλþμÞ

αTμ
π

��
tan−1

x2−h
2

x1−a
− tan−1

x2þh
2

x1−a

�
−
�
tan−1

x2−h
2

x1þa− tan−1
x2þh

2

x1þa

��
σT33¼−2ð3λþ2μÞ

λþ2μ αTμ

σT12¼ 3λþ2μ
2ðλþμÞ

αTμ
π In

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−aÞ2þ

�
x2−h

2

�
2

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1þaÞ2þ

�
x2þh

2

�
2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−aÞ2þ

�
x2þh

2

�
2

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1þaÞ2þ

�
x2−h

2

�
2

s

σT13¼σT23¼0

(9)

If the length of the inclusion is much larger than its thickness, the
terms σT11, σ

T
22, and σ

T
12 are very small compared with σT33 and can be

neglected within the inclusion. It can be considered that the inclu-
sion is only affected by the stress in the x3-direction.

The aligned nonisothermal inclusion model

Wei et al. (2020b) model the anelasticity of P and SV waves by
aligned isothermal inclusions. Appendix A derives the dispersion/
attenuation coefficient. Unlike aligned isothermal inclusions, non-
isothermal inclusions generate axial thermoelastic stress in the
x3-direction, mentioned in the “Thermoelastic stresses from a 2D
rectangular inclusion” section, which results in a high-order constit-
utive relation between the applied stress and resulting strain. This
effect, called acoustoelasticity, yields velocities dependent on the
stress state of the medium.
For nonisothermal solid inclusion with a small aspect ratio, the

normal and shear stresses become (Pao, 1984)8>>><
>>>:

σE12þσS12¼
�
μ−P

m−λþμ
2μ n−2λ

3λþ2μ

�
½Δu

⇀
niðx1 ;p1 ;p2Þ�1

h

σE22þσS22¼
�
λþ2μ−P

2l−2λ
μ ðλþ2μþmÞ
3λþ2μ

�
½Δu

⇀
niðx1 ;p1 ;p2Þ�2

h

; jx1j<a;x2¼0;

(10)

where σEjk and σSjk are the stress components caused by hu⇀nii and
S
⇀

njhu⇀nii, respectively; S
⇀

njhu⇀nii is the scattered wavefield at the
njth inclusion by averaging the incident wavefield u

⇀
ni of the nith

inclusion; and l; m, and n are third-order elastic moduli. By com-
bining the axial stress P ¼ −σT33 and equation 10, we obtain the
following boundary conditions:

8<
:

σE12þσS12¼
�
μ−2αTμ

m−λþμ
2μ n−2λ
λþ2μ

�
½Δu

⇀
niðx1 ;p1;p2Þ�1

h

σE22þσS22¼
�
λþ2μ−2αTμ

2l−2λ
μ ðλþ2μþmÞ
λþ2μ

�
½Δu

⇀
niðx1 ;p1;p2Þ�2

h

; jx1j<a;x2¼0:

(11)

Substituting equations A-3 and A-6 into equation 11 yields

8>><
>>:

R
a
−aT121ðx1;0jξ1;0ÞD1ðξ1Þdξ1þμ−2αTμ

m−λþμ
2μ

n−2λ

λþ2μ

μh D1ðx1Þ¼eikPx1 sinφR
a
−aT222ðx1;0jξ1;0ÞD2ðξ1Þdξ1þ λþ2μ−2αTμ

2l−2λμ ðλþ2μþmÞ
λþ2μ

μh D2ðx1Þ¼eikPx1 sinφ
;

(12)

where T jkl is given in Kawahara and Yamashita (1992) and Dj is
given in equation A-9. The method of Yamashita (1990) is adopted
to solve for Dj numerically. Therefore, equation 12 becomes8>><
>>:

R
1
−1 T̂121ðs;0jξ̂1;0ÞD̂1ðξ̂1Þdξ̂1þμ−2αTμ

m−λþμ
2μ

n−2λ

λþ2μ

μh D̂1ðsÞ¼eik̂Ps sinφR
1
−1 T̂222ðs;0jξ̂1;0ÞD̂2ðξ̂1Þdξ̂1þ λþ2μ−2αTμ

2l−2λμ ðλþ2μþmÞ
λþ2μ

μh D̂2ðsÞ¼eik̂Ps sinφ
;

(13)

which is discretized as

8>>><
>>>:

P
M−1
n¼1

�
T121
mn þμ−2αTμ

m−λþμ
2μ n−2λ

λþ2μ

μh δmn

�
D̂1n¼eik̂Psm sinφ

P
M−1
n¼1

�
T222
mn þ λþ2μ−2αTμ

2l−2λμ ðλþ2μþmÞ
λþ2μ

μh δmn

�
D̂2n¼eik̂Psm sinφ

; m¼1; :::;M−1:

(14)

Here, D̂jðj ¼ 1; 2Þ can be calculated from equation 14. Then, we
obtain the dispersion/attenuation coefficient κP for P-wave scatter-
ing from D̂jðj ¼ 1; 2Þ and equation A-13. The phase velocity VP

and dissipation factor Q−1
P are (Kawahara and Yamashita, 1992)8><

>:
VP ¼

�
1 − Re κP

cos φ
kP

�
vP

Q−1
P ¼ 2 Im κP

cos φ
kP

; (15)

where Re and Im denote the real and imaginary parts, respectively.
Similarly, we obtain κSV from equation A-16, and8><

>:
VSV ¼

�
1 − Re κSV

cos ϕ
kSV

�
vSV

Q−1
SV ¼ 2 Im κSV

cos ϕ
kSV

: (16)

For nonisothermal fluid-saturated inclusion, the normal and shear
stresses become (Kostek et al., 1993)8<

:
σE12 þ σS12 ¼ 0

σE22 þ σS22 ¼
�
λf − P 4lf−2mfþnf

2λf

�
½Δu

⇀
niðx1;p1;p2Þ�2

h
: (17)

Because the third-order elastic moduli lf ,mf , and nf of the fluid are
very small compared with the Lamé constant λf , the acoustoelas-
ticity effect in the fluid-saturated inclusion can be neglected. More-
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over, the thermoelastic effect behaves significantly for fluid inclusion,
which differs from solid inclusion (Wei et al., 2020b). Considering the
thermoelastic effect on the nonisothermal fluid-saturated inclusion
yields the following normal and shear stresses (Wei et al., 2020b):

8<
:

σE12þσS12¼0

σE22þσS22¼
�
λfþ 9λ2fα

2
fT

ðiÞ

ρfCf

�
½Δu

⇀
niðx1;p1;p2Þ�2

h
; jx1j<a;x2¼0;

(18)

where αf , ρf , and Cf are the thermal expansion coefficient, mass
density, and specific heat capacity of the fluid, respectively. Similarly,
we can obtain the dispersion/attenuation coefficient for P- and SV-
wave scattering by the aligned nonisothermal fluid-saturated in-
clusions.

NUMERICAL EXAMPLES

Some numerical examples illustrate P- and SV-wave dissipation
in a nonisothermal media containing inclusions with negligible
background porosity. We consider the following inclusion number
density, half-length, and thickness: 4 × 10−5 m−2, 50 m, and 2 m,
respectively. The wave dissipation is analyzed for two sets of inclu-
sion parameters: (1) solid properties with λ ¼ 4 GPa, μ ¼ 6 GPa,
α ¼ 0.33 × 10−5°K−1; ρ ¼ 2650 kg=m3, l ¼ −295 GPa, m ¼
−997 GPa, and n ¼ −1672 GPa at 298°K (Winkler and
McGowan, 2004; Carcione et al., 2018), which are assumed to
be constant within a certain temperature range and (2) fluid proper-
ties at different temperatures shown in Table 1 (Kretzschmar and
Wagner, 2019). After obtaining the value of the dispersion/attenu-
ation coefficient κ from these parameters, the phase velocity and
dissipation factor can be calculated from equations 15 and 16.
We show the phase velocity of the SV-wave scattering by the solid-

inclusion model as a function of frequency at various incidence an-
gles in (ϕ ¼ 0°) Figure 2a, (ϕ ¼ 60°) Figure 2b, and (ϕ ¼ 90°) Fig-
ure 2c for three different temperature differences. The velocity is
almost constant at low frequencies, because of Rayleigh scattering,
and then increases rapidly at the middle-frequency Mie scattering
range, and slightly as a result of high-frequency scattering. Increasing
the temperature difference, the velocity dispersion becomes stronger
in the low- and middle-frequency regimes, especially in the first,
whereas the effect in the high-frequency regime is negligible. More-
over, at high incidence angles, the dispersion is weak. To further

Table 1. Fluid properties at different temperatures.

T0 (°K) αf ð10−6=°KÞ ρf (kg=m3Þ Cf (m2=½s2 · °K�Þ λf (MPa)

348 195.4 1007.3 4050.0 2701.0

398 264.8 975.2 4090.0 2401.1

498 431.1 889.7 4246.0 1520.8

Figure 2. Phase velocity of the SV-wave scattering by the solid-inclusion model as a function of frequency at ϕ = (a) 0°, (b) 60°, and (c) 90° for
three temperature differences.

Figure 3. Phase velocity of the SV-wave scattering by the solid-inclusion model as a function of the temperature difference at ϕ = (a) 0°,
(b) 60°, and (c) 90° for three frequencies.
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illustrate the effect of the temperature difference, Figure 3 shows the
SV-wave dispersion at φ = 0° (Figure 3a), 60° (Figure 3b), and 90°
(Figure 3c) for the three frequencies (20, 100, and 500 Hz) corre-
sponding to Rayleigh, Mie, and high-frequency scattering, respec-
tively. The effects are more pronounced at low frequencies.
Figure 4 shows the dissipation factor of the SV-wave scattering by

the solid-inclusion model as a function of frequency. It has the shape
of a relaxation peak, and the effect of the temperature difference is
pronounced at frequencies around the peak. The attenuation de-
creases with increasing the incidence angle and exhibits greater sen-
sitivity than dispersion, that is, stronger anisotropy. The dissipation

factor of the SV wave as a function of the temperature difference at
ϕ = 0° (Figure 4a), 60° (Figure 4b), and 90° (Figure 4c) for the three
frequencies is shown in Figure 5. Attenuation increases with increas-
ing the temperature difference. This is because the thermoelastic
stress is positively correlated with the temperature difference and
the acoustoelastic effect increases with the stress. When the inclusion
temperature is higher than the background temperature, the acoustoe-
lastic effect reduces the wave velocity and enhances the scattering
attenuation because of the reduction in inclusion stiffness.
Figures 6, 7, 8, and 9 display the same quantities as Figures 2–5,

respectively, but for the P wave at φ = 0° (Figures 6a, 7a, 8a, and

Figure 4. Dissipation factor of the SV-wave scattering by the solid-inclusion model as a function of frequency at ϕ = (a) 0°, (b) 60°, and (c) 90°
for three temperature differences.

Figure 5. Dissipation factor of the SV-wave scattering by the solid-inclusion model as a function of the temperature difference at ϕ = (a) 0°,
(b) 60°, and (c) 90° for three frequencies.

Figure 6. Same as Figure 2, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.

5
6
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9a), 60° (Figures 6b, 7b, 8b, and 9b), and 90° (Figures 6c, 7c, 8c,
and 9c). The trend is similar, but there are differences in magnitude
with a temperature difference due to the acoustoelastic effect, which
reduces the shear modulus across the inclusions as a result of the
thermal stress. For example, the P-wave dispersion and attenuation
curves are almost independent of the temperature differences at
φ = 90° compared with those of the SV wave.
Figures 10 and 11 show the same quantities as Figures 2 and 4,

respectively, but for the SV-wave scattering by the fluid-saturated in-
clusion model at ϕ ¼ 0° (Figures 10a and 11a), 60° (Figures 10b and
11b), and 90° (Figures 10c and 11c). Because the temperature fluc-
tuations in the fluid model do not cause shear stress, and the polari-
zation direction of the SV wave is orthogonal to the propagation

direction, the SV wave for the three temperature differences along
the direction normal to the inclusions results in the same dispersion
and attenuation. Unlike the case of normal incidence, shown in Fig-
ures 10b, 10c, 11b, and 11c, the SV-wave dispersion and attenuation
vary with temperature, which decreases with increasing the incidence
angle. Figures 12 and 13 display the same quantities as Figures 10
and 11, respectively, but for the P wave at φ = 0° (Figures 12a and
13a), 60° (Figures 12b and 13b), and 90° (Figures 12c and 13c). Sim-
ilar to the SV wave, the P-wave dispersion and attenuation decrease
with increasing the incidence angle. Compared with the SVwave, the
variations of the P-wave dispersion and attenuation are more pro-
nounced as a function of the temperature difference but show less
sensitivity to the incidence angle.

Figure 7. Same as Figure 3, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.

Figure 8. Same as Figure 4, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.

Figure 9. Same as Figure 5, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.

7
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Figure 10. Same as Figure 2, but for the SV-wave scattering by the fluid-saturated inclusion model at ϕ = (a) 0°, (b) 60°, and (c) 90°.

Figure 11. Same as Figure 4, but for the SV-wave scattering by the fluid-saturated inclusion model at ϕ = (a) 0°, (b) 60°, and (c) 90°.

Figure 12. Same as Figure 10, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.

Figure 13. Same as Figure 11, but for the P wave at ϕ = (a) 0°, (b) 60°, and (c) 90°.
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DISCUSSION

In this paper, we describe the relation between seismic dissipation
and nonisothermal inclusions with an impermeable background where
the thermal anomaly propagates solely via diffusion instead of con-
vection. Thermal effects can exchange between the background and
inclusion by the convection in a permeable host rock (Patterson and
Driesner, 2021), which are not considered in our model. To study this
effect, we can extend this model to the fluid‐saturated porous back-
ground medium based on the thermo-poroelasticity theory (Carcione
et al., 2019; Wei et al., 2020a).
In addition to wave scattering and thermal effects, wave‐induced

fluid flow (WIFF) also will occur for a fluid‐saturated porous back-
ground with cracks, leading to the additional dispersion and attenu-
ation of the seismic waves. In general, wave dissipation in the low-
frequency range is dominated by thermal effects andWIFF, whereas
the scattering determines the high-frequency range, but we also
need to consider the nonlinear coupling between these mechanisms
(Guo and Gurevich, 2020; Wei et al., 2022).
The present theory can be supplemented with other models to es-

timate temperature distribution, water content, and rock composition
(Romanowicz and Mitchell, 2007; Carcione et al., 2020). A limitation
of our model is only valid for the sparsely distributed inclusions, and it
is necessary to extend it to the dense case in the future (e.g., Benites
et al., 1992).

CONCLUSION

We have developed a model to estimate the effects of nonisothermal
aligned inclusions on wave anelasticity. The effects on the P and SV
waves not only include the elastic scattering but also the acoustoelastic
effect by thermoelastic stresses across inclusion boundaries, based on
the Foldy approximation. Then, we evaluate the seismic dispersion and
attenuation as a function of temperature and incidence angle. The results
indicate that the dissipation increases with the increasing temperature
difference between the inclusions and background medium. The SV-
wave scattering by the solid-inclusion model shows a strong sensitivity
to this difference along the direction perpendicular to the inclusions,
whereas the P wave is less affected. However, the P and SV waves
in the fluid-saturated inclusion model behave in the opposite manner.
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APPENDIX A

DISPERSION/ATTENUATION COEFFICIENTS FOR
MODELS OF SCATTERING BY ALIGNED

ISOTHERMAL SOLID INCLUSIONS

The mean wavefield u
⇀
A at the observation point A is the sum of

the incident wavefield u
⇀0
A and the scattered wavefield S

⇀

Ahu⇀nii as

hu⇀Ai ¼ u
⇀0
A þ ν

Z
S
⇀

Ahu⇀niidr⇀ni (A-1)

for aligned inclusions distributed sparsely and randomly through a
2D homogeneous medium, where hu⇀nii is the mean incident
wavefield at the nith inclusion and r

⇀
ni ¼ ðp1; p2Þ denotes the cen-

tral location of this inclusion. For the incident P wave, we consider

u
⇀0
A ¼ A0eikPX1 sin φþikPX2 cos φðsin φ; cos φÞ (A-2)

with amplitude A0; wavenumber kP ¼ ω=vP, and velocity vP of the
background medium. The mean incident wavefield hu⇀Ai at the ob-
servation point A is

hu⇀Ai ¼ AeikPX1 sin φþikPX2ðcos φþκP=kPÞ
�
sin φ; cos φþ κP

kP

�
(A-3)

with the unknown mean wavefield amplitude A and an unknown
coefficient κP describing the dispersion and attenuation. The jth
component of the scattered wavefield S

⇀

njhu⇀nii at the njth inclusion
by the mean incident wavefield hu⇀nii of the nith inclusion is

½S
⇀

njhu⇀nii�j ¼ −
Z

a

−a
½Δu

⇀
niðξ1; p1; p2Þ�lΓjlðx1; x2jξ1; 0Þdξ1;

j; l ¼ 1; 2; (A-4)

where ½Δu
⇀
niðξ1; p1; p2Þ�l is the lth component of the displacement

discontinuity through the nith inclusion, and the Green function
stress tensor Γjl is

Γjlðx1;x2jξ1;ξ2Þ ¼ i
4

�
δl2

�
1−2

k2P
k2SV

�
∂
∂xj

Hð1Þ
0 ðkPRÞ

þ
�
δjl

∂
∂x2

þδj2
∂
∂xl

�
Hð1Þ

0 ðkSVRÞ−
2

k2SV

∂3

∂xj∂xl∂x2

ðHð1Þ
0 ðkPRÞ−Hð1Þ

0 ðkSVRÞÞ
�
; j;l¼1;2;

(A-5)

where kSV ¼ ω=vSV and vSV are the wavenumber and wave
velocity of the background medium, respectively;
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − ξ1Þ2 þ ðx2 − ξ2Þ2

p
; and Hð1Þ

0 ðkRÞ is the zero-order
Hankel function of the first kind. From equation A-4 and Hooke’s
law, the stress caused by hu⇀nii and S

⇀

njhu⇀nii is (Kawahara and
Yamashita, 1992; Guo et al., 2018b)8<
:σEjk¼λδjk

∂
∂xl
½hu⇀nii�lþμ

�
∂
∂xk

½hu⇀nii�jþ ∂
∂xj

½hu⇀nii�k
�

σSjk¼−μ
R
a
−a½Δu

⇀
niðξ1;p1;p2Þ�lT jklðx1;x2jξ1;0Þdξ1

; j;k;l¼1;2;

(A-6)

where λ and μ are the Lamé constants of the background medium.
For solid inclusions with a small aspect ratio, the normal and

shear stresses are

8<
: σE12 þ σS12 ¼ μc

½Δu
⇀
niðx1;p1;p2Þ�1

h

σE22 þ σS22 ¼ ðλc þ 2μcÞ ½Δu
⇀
niðx1;p1;p2Þ�2

h

; jx1j < a; x2 ¼ 0:

(A-7)
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Substituting equations A-3 and A-6 into equation A-7 yields

8<
:

R
a
−aT121ðx1;0jξ1;0ÞD1ðξ1Þdξ1þ μc

μhD1ðx1Þ¼eikPx1 sinφR
a
−aT222ðx1;0jξ1;0ÞD2ðξ1Þdξ1þ λcþ2μc

μh D2ðx1Þ¼eikPx1 sinφ
; jx1j<a;

(A-8)

where the Tjkl is given in the paper by Kawahara and Yamashita
(1992) and

8>>><
>>>:

D1ðξ1Þ¼ ½Δu
⇀
niðξ1;p1;p2Þ�1

2iðkP cosφþκPÞsinφAeikPp1 sinφþikPp2ðcosφþκP=kPÞ

D2ðξ1Þ¼ ½Δu
⇀
niðξ1;p1;p2Þ�2

ikPAeikPp1 sinφþikPp2ðcosφþκP=kPÞ
h	

k2
SV

k2
P

−2


sin2φþk2

SV

k2
P

	
cosφþκP

kP



2
i:

(A-9)

The method of Yamashita (1990) is adopted to solve forDj numeri-
cally; thus, equation A-8 is transformed into8<
:

R
1
−1 T̂121ðs;0jξ̂1;0ÞD̂1ðξ̂1Þdξ̂1þ μc

μhD̂1ðsÞ¼eik̂Ps sinφR
1
−1 T̂222ðs;0jξ̂1;0ÞD̂2ðξ̂1Þdξ̂1þ λcþ2μc

μh D̂2ðsÞ¼eik̂Ps sinφ
; jsj<1;

(A-10)

which is discretized as

8>><
>>:

P
M−1
n¼1

�
T121
mn þ μc

μhδmn

�
D̂1n¼eik̂Psm sinφ

P
M−1
n¼1

�
T222
mn þ λcþ2μc

μh δmn

�
D̂2n¼eik̂Psm sinφ

; m¼1; :::;M−1;

(A-11)

where sm ¼ −1þmΔs, Δs ¼ 2=M, M is the discretization num-
ber, and D̂ is approximately constant in the nth interval:

�
ξ̂1 ¼ ξ1

a ; s ¼ x1
a ; k̂P ¼ akP

T̂j2j ¼ a2Tj2j; D̂j ¼ Dj

a ; j ¼ 1; 2
; (A-12)

and Tj2j
mn ¼ ∫ snþΔs=2

sn−Δs=2
T̂j2jðsm; 0jξ̂1; 0Þdξ̂1 ðj ¼ 1; 2Þ. Here,

D̂jðj ¼ 1; 2Þ and ½Δu
⇀
ni�jðj ¼ 1; 2Þ can be obtained from equa-

tions A-11 and A-9, respectively, and then we can obtain
½S
⇀

njhu⇀nii�j. Substituting ½S
⇀

njhu⇀nii�j and equation A-2 into equa-
tion A-1, compared with equation A-3, yields

κP ¼ νkPa2½ϕ̂1f sin 2φ sinφþ ϕ̂2

2f cosφ
ð1 − 2f sin2 φÞ2�

(A-13)

with f ¼ v2SV=v
2
P and ϕ̂j ¼

P
M−1
m¼1 D̂jme−ik̂Psm sinφΔsðj ¼ 1; 2Þ:

For the incident SV wavefield u
⇀0
A, we consider

u
⇀0
A ¼ B0eikSVX1 sin ϕþikSVX2 cos ϕðcos ϕ;− sin ϕÞ; (A-14)

where B0 is the amplitude and the wavenumber kSV is defined as
ω=vSV. The mean wavefield u

⇀
A at the observation point A is

hu⇀Ai ¼ BeikSVX1 sin ϕþikSVX2ðcos ϕþκSV=kSVÞ

×
�
cos ϕþ κSV

kSV
;− sin ϕ

�
; (A-15)

where B is the amplitude of the unknown average wavefield and κSV
is the unknown coefficient describing the dispersion and attenua-
tion. Then, we obtain

κSV ¼ νkSVa2
�
ϕ̂1

cos2 2ϕ

2 cos ϕ
þ ϕ̂2 sin 2ϕ sin ϕ

�
: (A-16)
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Queries

1. The running head title is too long for the space allotted. Please provide a shorter title (40 characters or less) for the running
head.

2. Please check if the given authors’ affiliations are set correctly.

3. Please check the sentence, “Therefore, it is important : : : ” for clarity.

4. We have changed the citation of Simmons et al. (1965) to Simmons and Brace (1965) to match the reference list. Is this
correct?

5. Please check that the change made to the sentence,” The attenuation decreases with : : : ” retains the intended meaning.

6. Please check that the changes made to the sentence “Figures 6, 7, 8, and 9 display the same quantities : : : ” retain the
intended meaning.

7. Please check that the changes made to the sentence “Figures 10 and 11 show the same quantities : : : ” retain the intended
meaning.

8. Please check that the changes made to the sentence, “Unlike the case of normal incidence : : : ” retains the intended meaning.

9. We have changed the citation of Patterson et al. (2021) to Patterson and Driesner (2021) to match the reference list. Is this
correct?

10. Unnumbered equations are not allowed by SEG style, so we have renumbered the equation as well as text citation. Please
check the renumbering and the text mentions of the equations.
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