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Wave-induced thermal flux and scattering of P waves in a medium with

aligned circular cracks

Jia Wei', Li-Yun Fu?, José M. Carcione®, and Tongcheng Han*

ABSTRACT

High temperature affects the seismic properties of cracked
and faulted reservoirs and can be an indicator for their detection.
To this purpose, the authors study the wave-induced thermal
flux (WITF) and develop two exact solutions for the scattering
of compressional waves by a circular crack filled with a com-
pressible fluid, in which the approach is based on thermally per-
meable and impermeable boundary conditions. The authors
obtained the phase velocity and attenuation as a function of
frequency, which found that there are two loss mechanisms,
i.e., thermoelastic dissipation at low frequencies and elastic
scattering at high frequencies. Basically, when the crack

size is comparable to the thermal and elastic wavelengths,
there are substantial dispersion and attenuation (anelasticity)
in the WITF and scattering frequency ranges, respectively.
This means that the spatial inhomogeneity scale for inducing
WITF is much smaller than that of scattering and the two mech-
anisms can be discriminated. The dependence of the compres-
sional-wave velocity and attenuation on the compressibility
and thermal expansion of the crack-filling fluid are different
depending on the thermal diffusion rates at the crack interface.
The anelasticity is much higher in the fully permeable case.
This model has the potential to evaluate thermoelastic
properties and heterogeneity at different scales from seismic
responses.

INTRODUCTION

Cracks of various sizes are widely observed in the lithosphere,
which have a significant influence on the propagation of P and
S waves (Carcione et al., 2020a). Scattering from these water-satu-
rated cracks and from melted zones provides information about the
earth structure and dynamics, in which temperature plays a key role
(e.g., Romanowicz and Mitchell, 2007; Carcione et al., 2018b).
Seismic scattering has been widely used for the detection of conven-
tional hydrocarbon exploration because it is an indicator of the pres-
ence of cracks. However, the identification of tight oil and gas
resources in unconventional resources such as source rocks, re-
quires further research related to seismic scattering and attenuation
(e.g., Fu, 2012, 2017). Aki (1980) states that thermoelasticity and
elastic scattering are the two most viable models to describe seismic

attenuation at lithospheric temperatures, depending on the scale of
the heterogeneities. However, it is not straightforward to decouple
the effects of anelastic attenuation from scattering. Following Aki
(1980), the purpose of our work is to study the combined effect of
wave-induced thermal flux (WITF) and elastic scattering of P waves
propagating in a thermoelastic medium with aligned circular cracks,
with a particular focus on the separation of the two effects.
Thermoelasticity theory describes the relation between the fields
of elastic deformation and temperature. Spatial stress variations dur-
ing wave propagation in a cracked medium give rise to temperature
fluctuations and hence to local thermal fluxes, which result in wave
dissipation. This mechanism has been considered in geophysical
studies (e.g., Zener, 1938; Treitel, 1959; Savage, 1966; Aki,
1980; Armstrong, 1984; Carcione et al., 2018c, 2019, 2020b),
and the effects of temperature in geothermal prospecting (e.g.,
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Jacquey et al., 2015) and global seismology (e.g., Boschi, 1973;
Parmentier and Haxby, 1986; Ritsema et al., 2011). Zener (1938)
describes the physics of thermoelastic attenuation, and Biot (1956)
proposes the differential equations of thermoelasticity based on the
Fourier heat conduction law. However, this equation is parabolic,
predicting discontinuities, and infinite velocities as a function of
frequency contrary to actual observations. Savage (1966) investi-
gates the thermoelastic attenuation of P and S waves for medium
filled with spheres and cylindrical cavities or pores. Lord and Shul-
man (1967) modify the conventional Fourier law by introducing a
relaxation term into the heat equation, which became hyperbolic
and hence avoided those unphysical behaviors. Armstrong (1984)
reports that the frequency dependence of thermal dissipation
depends on the distribution and correlation of the heterogeneities.
Carcinoid et al. (2020b) obtain analytical solutions of wave-induced
thermoelastic attenuation in media with cavities or pores and
thin periodic layers. Wei et al. (2020a) study the thermoelastic
dispersion and attenuation of P- and SV-wave scattering by aligned
cracks in an isothermal elastic medium. Numerical algorithms,
based on the Lord-Shulman equations, were developed to compute
synthetic seismograms in thermoelastic media (e.g., Carcione et al.,
2018c; Hou et al., 2021), with Cercone et al. (2019) extending the
simulations to the poroelasticity case. Moreover, Green’s functions
in the frequency domain were derived (Wang et al., 2020; Wei et al.,
2020b). The results predict the presence of the classical P, and S
waves and a thermal wave, which present diffusive behaviors under
certain conditions and have characteristics similar to the slow P
wave of poroelasticity.

In past decades, wave scattering in cracked media has been a sub-
ject of study for seismologists and rock physicists. Early works
(e.g., Sezawa, 1927; Harumi, 1962; Martin, 1981) focused on
the scattering by a single crack in an elastic solid. Then, the case
of scattering by a set of randomly distributed aligned cracks was
considered (e.g., Kikuchi, 1981; Yamashita, 1990; Zhang and
Gross, 1993; Sato, 2021), based on the Floyd approximation (Foldy,
1945). These methods were further developed to study wave scat-
tering by aligned fluid-saturated cracks in an elastic background
medium (e.g., Kawahara and Yamashita, 1992; Guo et al.,
2018c). On this basis, the Biot theory was used to investigate
wave-induced fluid flow (WIFF) between the porous background
and cracks (e.g., Galvin and Gurevich, 2009; Gurevich et al.,
2009), in particular the effects on dispersion and attenuation of
P waves (e.g., Brajanovski et al., 2005; Ba et al., 2016, 2017;
Fu et al., 2018). Recently, an effective-medium model for S-wave
dispersion and attenuation in porous media with spherical or cylin-
drical cracks was developed (Song et al., 2016a, 2016b). Many
studies reveal that, when the crack size is comparable to the Biot
slow P wavelength, there is significant dispersion and attenuation
(e.g., Miiller et al., 2010; Guo et al., 2018a, 2018b; Fu et al., 2020).
The WIFF mechanism also can be described with an additional hy-
drodynamic equation (e.g., Chapman et al., 2002; Chapman, 2009;
Shuai et al., 2020, 2022). However, most works assume that the
crack-filling fluid is incompressible, thus only considering the
WIFF effect and ignoring elastic scattering. More recently, Guo
and Gurevich (2020) and Song et al. (2020) study the effects of
coupling between WIFF and elastic scattering. Their results show
that diffusion-type WIFF and elastic scattering dominate the anelas-
ticity at low and high frequencies, respectively, but these models do
not consider explicitly the temperature effects on wave propagation.

Wei et al.

We investigate the coupling between WITF and elastic scattering
based on the Lord-Shulman equations of dynamic thermoelasticity.
We first formulate the governing equations, and then derive the gen-
eral solution and construct two pairs of dual integral equations under
boundary conditions of fully thermal permeability and impermeabil-
ity. These integrals are transformed to Fredholm integral equations of
the second kind to obtain the exact solutions. Furthermore, the veloc-
ity dispersion and attenuation of P waves in a sparse distribution of
aligned cracks are obtained by the Foldy approximation and the effect
of the crack-filling fluid thermoelastic properties is analyzed, consid-
ering crack surfaces with different thermal diffusion.

PROBLEM FORMULATION

We consider an incident harmonic plane P wave propagating in
an infinite thermoelastic solid with aligned fluid-saturated cracks in
the positive direction of the z-axis of a cylindrical polar coordinate
system (r, @, z). A set of cracks with the same circular shape, radius
a, and thickness d are sparsely, randomly, and homogeneously em-
bedded in a thermoelastic nonporous background medium
perpendicular to the z-axis (Figure 1a). To estimate the velocity
dispersion and attenuation, the scattering of the incident P wave
by a single circular crack should be studied first. We assume that
the crack occupies the circle 0 < r < a on the plane z = 0 as shown
in the oblique view (Figure 1b) and the front view (Figure 1c). The
incident P wave can be expressed as ul" = uye’**?, where the super-
script “in” denotes the incident field and u and kp are the amplitude
and wavenumber, respectively. The basic equations of dynamic
thermoelasticity are formulated in this section, which provides
the basis to study the coupling between WITF and elastic scattering.

Basic equations for dynamic thermoelasticity

We use the Lord-Shulman model to describe wave propagation in
the thermoelastic background medium. The constitutive equations
of thermoelasticity for the stress tensor ¢ and the conservation of
energy for the temperature disturbance @ can be, respectively, ex-
pressed as (Biota; Carcione et al., 2020b; Wei et al., 2020a)

6=V -u+u(Va+uV) - po '
0=-1(pv-u-1) ’ M

where 4 and u are the Lamé constants of the background medium; u
is the displacement vector; T is the reference absolute temperature;
p and ¢ are the mass density and specific heat capacity of the ther-
moelastic medium, respectively; £ is the amount of heat absorbed
by the element; and # = (34 + 2u)a with a being the coefficient of
thermal expansion. Introducing the relation between the heat and
thermal flux 4 = —V - ¢, equation 1 becomes

6=V -u+u(Vu+uV)-po
Furthermore, the dynamical equations in the Fourier domain are
V-6 = —-w’pu, )

where  is the angular frequency. The Lord-Shulman generalized
equation of heat conduction
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is required to avoid infinite velocities by introducing a relaxation
term into the classical heat equation, where 7, and y are the relax-
ation time and the coefficient of heat conduction, respectively. By
substituting equation 2 into equations 3 and 4, we obtain the fol-
lowing governing equations of dynamic thermoelasticity:

{ (Hiem — #)VV - u + uVu + o*pu +ﬂl%vx;¢ =0
T T, V- nd ,
ﬂﬁTf’EVV ~u+ﬁT,“E—T0 + w P1g =
)
where
2T
Htem—H+ﬂpc°, (6)
E

is the longitudinal wave modulus of the background medium, with
H = 2+ 2u being the longitudinal wave modulus. The preceding
governing equations are used to describe wave propagation in
homogeneous thermoelastic media.
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General solution of the thermoelasticity equations

The scattered fields for the case of a normally incident P wave
impinging on a single circular crack, in a cylindrical coordinate sys-
tem, can be solved by using the Hankel transform, according to
Sheriel and El-Maghraby (2003). As these authors, we ignore
the macroscopic thermoelastic attenuation in the seismic range.
The general solutions of equation 5 for the temperature disturbance,
scattered displacements, and stresses can be written as

. T
0(r.z) = /0 STk - kA (K)e ™ do(kr)kdk,  (Ta)
i=P

. T

()= [ Astes -S| soaoniak
i=P

(7b)

MSC(V 7/00 —nsz_ﬁ 2 - =iz
(r,z)= ; Ag(k)nse Hk E A;(k)e™= | J, (kr)dk,
i—p

(7c)

Figure 1. (a) Set of cracks with the same circular
shape, sparsely, randomly, and homogeneously
embedded in thermoelastic background medium
perpendicular to the z-axis. Each crack has radius
a and thickness d and is filled with a compressible
fluid, as shown in the (b) oblique view and (c) front
view. An incident harmonic plane P wave u}'
passes through the medium along the axial direc-
tion of the cracks.

ack-filling fluid
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where the superscript sc denotes the scattered fields; the subscripts
P, T, and S denote the thermoelastic P-, T-, and S-wave modes,
respectively; ko = w+/p/H is the wavenumber of the P wave
in the elastic background; k; denotes the wavenumber of the
corresponding body wave with kp = w\/p/Hems
ky = o+/pHen/(To/pcp)H, and ks = o\/p/p; n; (i=P,T,
and S) are n; = k* — k?; and J,(kr) and J| (kr) are the Bessel func-
tion of the first kind of order zero and first, respectively. Substituting
equation 7a into equation 4 yields the following thermal flux:

02 = =55 [ ZkZ )4

(k)i Jo (kr)kdk,

(79)

To

¢ (r, 2) — kA (k)e™J | (kr)k*dk.

(72)

Based on the three scalar spectral amplitude functions A;(k), equa-
tions 7a—7g provide the general solutions to the scattering problem.
To determine the unknown coefficient A;(k), we need the boundary
conditions on the plane z = 0.

Exact solutions for thermally permeable and
impermeable boundary conditions

The normal component of the scattered displacements and ther-
mal flux outside the crack filled with a compressible fluid are zero
on the plane z = 0, and the shear stress is zero. For the permeable
case, the thermal flux rapidly diffuses through the crack surface.
Thus, the temperature disturbance at the crack boundary is zero
(Zhong and Lee, 2012). Combined with equation 1, the boundary
conditions in this case are

G (r0) =0, r >0, (8a)

u¥(r,0) =0, r > a, (8¢)

Wei et al.

6*(r,0) =0, 0<r<a, (8d)

¢¥(r,0) =0, r>a, (8e)
where K is the bulk modulus of the fluid. Substituting the general
solutions 7a, 7e, and 7f into the boundary conditions 8a, 8d, and 8e

yields

25 K2 [Ap(K)np + Ar(K)ny]

As(k) - 2 k2 —k% ) rZ 09 (93)
-2
AR == 2P A0S < O
0 T
ko = kb np
Ar(k) = —-2 PP 4 (k), ) 9
T() k2 k%"nT P() r>a (9¢)

We then substitute these relations equations into the general solu-
tions 7b and 7d, and we use the boundary conditions 8b and 8c to
obtain a pair of dual integral equations:

[ Ap(k)Zy (k) kJ o (kr)dk = M 0<r<a

S5 ko (kr)dk = 0, r > a

. (10)

where
2y =K K )
(k) ==L —3—(np — ynr
ud 2K — i3
2K —k3)* — 4 Kngne] = [(2 K = k3)* — 4 Knsnrly
22—k :
(11)
with
2R
e m (12)

On the other hand, in the impermeable case, the thermal flux can-
not diffuse through the crack surface, so that this flux at the crack
boundary is zero (Zhong and Lee, 2012). Wei et al. (2020a) estimate
the dispersion and attenuation of P and SV waves in an elastic back-
ground containing cracks constrained by this boundary condition.
In this case,

63%(r,0) =0, r>0, (13a)
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. T, sC O
aé%(r,0)+az§<r,0>=2<Kf+ﬂf 0) ) h<rza,
prcy d
(13b)
u¥(r,0) =0, r>a, (13c¢)
@(r,0) =0, r>0, (13d)

where 8, = 3K sa, with a; being the thermal expansion coefficient,
py is the mass density, and ¢ is the specific heat capacity of the
crack-filling fluid. Similarly, a pair of dual integral equation 10
can be obtained, with

BT
2 (Kf + /’;07) k3
Zilk) =——q 212

(2 K2 = K2 — 4 K] = [(2 K = K2)* — 4 Ky

(ne = xn1)

212 K2
(14)
and
_ k(z)_kl% np 15
- k2 — k2 . ( )
0~ Kkt

To obtain the scalar spectral amplitude function Ap (k) by solving
the preceding dual integral equation 10, the following new function
is introduced (Noble, 1963):

cnpkAp(k)
¢(k) = (16)
2k — ké
where
L ZRER-R) 2R-RE-R)
¢ = lim = SRy . a7
k—o0 ﬂpk kO kT

Then, the pair of dual integral equation 10 can be transformed to

© 7(k)p(k)Jo(kr)kdk = Feflento () < <
0 0 b (18)
H ’
Jeo p(k)Jo(kr)dk =0, r> a
where
2 k2 — K2
(k) == (k). (19)

Noble (1963) proves that equation 16 can be expressed as

¢@%:Aawummmnma (20)

After some steps, equation 18 can be converted into a single Fred-
holm integral equation of the second kind including the unknown
function y(r) as

w(r)— /Oa K(s,r)w(s)ds =h(r),0<r<a, 2D

where the kernel function is
2 e . .
K(s,r) == [1 — Z(k)] sin(ks) sin(kr)dk, (22)
7 Jo

and the inhomogeneous term is

ikPHtemMO dk = % ikPHtemuo r

Mﬁ—g/r k
Cxlo VP2 ul L

(23)

The unknown function y(r) can be solved numerically by the quad-
rature method; then, we can use equation 20 to obtain ¢ (k) and
Ap(k) from equation 16.

Sparse distribution aligned-crack model

For the purpose of calculating the effective far-field wave phase
velocity and attenuation caused by the sparse distribution aligned-
crack model, we need to compute the far-field forward scattering
amplitude of a single crack:

R gk R [
A O:_Ll-—_:_i/ dr. (24
»(0) ickpkl—r>% k ickp Jo y(r)rdr @4

If cracks are sparse and randomly distributed in the medium, as
shown in Figure 1a, multiple scattering can be ignored. We can per-
form the calculation in the propagation direction based on the Foldy
approximation. The far-field forward scattering amplitude f(0) of a
normally incident P wave propagating in a cracked and porous
fluid-saturated medium has been derived by Galvin and Gurevich
(2009). Based on this work, we obtain

B Ap(0)kp
0) =—=—"—"—. 25
10 =5~ 5)
The effective wavenumbers can be expressed as
277.'1’[0
kege = kp[1 + k_zf(o)]’ (26)
P

where ny is the number of cracks per unit volume. The phase veloc-
ity Vp and dissipation factor Q5! of the P wave are then (e.g., Car-
cione, 2014)

VP =2 -
{ :Re(lieff) . 27)
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where Re (k) and Im(keg;) represent the real and imaginary parts
of kg, respectively.

EXAMPLES

The velocity dispersion and attenuation of the normally incident
P wave as a function of the dimensionless frequency |kra| are
calculated for the permeable and impermeable cases. We
consider the following properties of Carcione et al. (2020b):
K =2+ (2u/3): 39 GPa, G=u: 39 GPa, p: 2650 kg/m>,
cy =pcg: 106X 10% kg/(m - s* - °K), y:532 m - kg/(s* - °K),
A:117x10° kg/(m - s? - °K), and 7y = y/(cgH):1.73 x 10713 s,

The crack has a radius ¢ = 10 m and thickness d = 0.1 m, and
the dimensionless crack density is &€ = nya® = 0.09. The fluid prop-
erties at 10 MPa are T, =373°K, p;=962.9 kg/m3, and
cy =962.9 kg/m3(Kretzschmar and Wagner, 2019), and we con-
sider two sets of parameters: (1) a; = 260.5x 107°°K~! with

a)
7.3 T T
— K,=1.11GPa
— ---.K,=2.11GPa
(2]
B 7.0 | K,=4.11GPa
=3
2
S
9 .....................................
0 67} ]
(O]
(2]
@ | o mmmmmemmmmmmaaal
K = \
Q \
0 641 . 1
©
F
d
6.1r 1

10° 102 10* 108
Dimensionless frequency |kTa|

b)
10°

Dissipation factor

—_— Kf= 1.11 GPa

_—— Kf= 2.11 GPa

1078 ¢ 3
------------- Kf=4.11 GPa

10° 10? 10* 10°
Dimensionless frequency |kal

Figure 2. (a) Phase velocity and (b) dissipation factor of P waves as
a function of the dimensionless frequency |kra| for the first set of
parameters and permeable boundary condition.

Wei et al.

Ky =1.11, 2.11, and 4.11 GPa and (2) K; = 2.11 GPa with
a; =20.5x 107, 420.5 x 107, and 820.5 x 1076 °K~".

Figure 2 shows the phase velocity (Figure 2a) and dissipation
factor (Figure 2b) due to P-wave scattering for the first set of param-
eters and permeable boundary condition, where we can see two
peaks, related to (1) the low-frequency WITF effect and (2) the
high-frequency elastic scattering, especially when K value is rel-
atively high. The velocity increases monotonically with frequency,
corresponding to the low-frequency peak, and decreases in the Ray-
leigh scattering regime and increases rapidly in the Mie scattering
one, corresponding to the high-frequency peak. In particular, when
the thermal wavelength or the elastic wavelength is comparable to
the crack size (1 < |kral <10 or 1< |kpa| < 10), the velocity
dispersion is severe, and attenuation has a peak. Due to the inter-
ference of the scattered waves from the crack tip, the phase velocity
and dissipation factor fluctuate in the high-frequency range (Kawa-
hara and Yamashita, 1992). Figures 3, 4, 5, 6, 7, and 8 show a sim-
ilar phenomenon. Moreover, we note that the anelasticity is strong

£
~

7.3 T T

—— K;=1.11GPa
----K;=211GPa

701

641

P-wave phase velocity (km/s)
(2]
~

6.1
10° 102 10* 108
Dimensionless frequency |kal
b
) 10°
1072
S
[}
8
c 107
ko)
©
j3
a
A 107
Kf= 1.11 GPa
o |- K=2116Pa
1077 e K,=4.11GPa 3
10° 102 10* 108

Dimensionless frequency |ka

Figure 3. Same as Figure 2, but with impermeable boundary con-
dition.
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by decreasing K ; because cracks are more easily compressed, lead-
ing to more temperature variations. The characteristic frequency of
the elastic scattering also decreases with decreasing K, but its in-
fluence on the WITF characteristic frequency can be ignored. All
the curves converge to the same value at the high-frequency limit,
which correspond to the P-wave velocity and dissipation factor of
the thermoelastic background medium.

Figure 3 depicts the same curves for the impermeable boundary
condition. The general trend is similar to that of the permeable case.
However, the dissipation is generally weaker, with a relatively small
WITF-dominated frequency range due to the much steeper slope of
the dispersion and attenuation curves. Moreover, the WITF charac-
teristic frequency moves to lower frequencies.

The phase velocity (Figure 4a) and dissipation factor (Figure 4b)
for the second set of parameters, and permeable boundary
condition, are shown in Figure 4. We observe that the P-wave
dispersion and attenuation do not change with the thermal

a
) 7.3 : : ;
a;=20.5x 107%°K™"
fo - = —Bopc—1
T o4l a,=420.5x 107%°K
LT p— a;= 820.5x 10~8°K™"
2
8 69r
°©
>
[O]
@
c 6.7
o
o
>
©
F es
6.3 : L 1 I
10° 102 10* 108
Dimensionless frequency |k;al
b) 400 : ; :
1072
—_
o
[
O
S
£ 107
®©
o
‘@
R%
)
10-8 & ;=205 x 108K’ ]
- - - a,=4205x 107%°K™"
- a;= 820.5x 107%°k~"
1078 : s ‘ ,

10° 102 10* 108
Dimensionless frequency |kTa|
Figure 4. (a) Phase velocity and (b) dissipation factor of P waves as

a function of |kra| for the second set of parameters and permeable
boundary condition.
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expansion coefficient ay, which means that this property of the fluid
cannot be estimated from the seismic response when the crack sur-
face is fully thermally permeable. Figure 5 displays the imper-
meable case, showing that the anelasticity increases with
decreasing ay.

The P-wave phase velocity and dissipation factor are calculated
for three different dimensionless crack densities ¢ = 0.01, 0.03, and
0.09 with a; = 260.5 X 107%°K~! and Ky =2.11 GPa and the two
types of boundary conditions (see Figures 6 and 7). In both cases,
the anelasticity is stronger for high crack densities, but the charac-
teristic frequencies of the two attenuation mechanisms do not
change, with the spatial inhomogeneous scale for inducing WITF
smaller than that of elastic scattering.

Finally, Figure 8 compares our results with those of the aligned-
circular-cracks elastic-scattering model (Zhang and Gross, 1993)
for K; =211 GPa, a; =260.5x107°K~!, and &=0.09. In
the high-frequency elastic scattering region, the dispersion and at-

a
) 73 . . :
a;=20.5x 1078°K™"
—_————q.= —6op—1
- a,=420.5x 107%°K
............. af: 820.5 x 10_6°K_1
6.9r

P-wave phase velocity (km/s)

6.7
6.5
63 1 1 1 1
10° 102 104 108
Dimensionless frequency |kal
b
) 10° . . .
1072

Dissipation factor
=)
L

10-8 a,=205x 105K’
- - - a,=4205x107%K™"

e 1= 8205 x 1070

10° 102 104 108
Dimensionless frequency |k al

1078

Figure 5. Same as Figure 4, but with impermeable boundary con-
dition.
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tenuation curves in the permeable case coincide with those of the
preceding scattering model, and the dissipation is stronger than that
of the impermeable case (for a detailed explanation, see Wei et al.,
2020a). In the low-frequency WITF region, the scattering model has
no effect, and the low-frequency limit is the same as that of the
impermeable case.

DISCUSSION

We have analyzed the combined effect of WITF and scattering of P
waves from a random distribution of fluid-saturated cracks. The re-
sults show that WITF is usually observed at low values of |kral,
whereas scattering is most likely to occur at high |kral, i.e., high
frequencies. Then, these two loss mechanisms can be separated due
to their different frequency ranges and phenomenologically modeled
with a generalized Zener model to compute synthetic seismograms.

Wei et al.

The proposed theory establishes a direct relation between seismic
dissipation and the thermoelastic properties of the lithosphere, such
as the thermal permeability of the crack interfaces (Figures 2 and 3),
which can provide useful information on the earth structure, such as
the distribution of the hydrocarbons and sources of geothermal en-
ergy (e.g., Kjartansson, 1980). In principle, the theory can be com-
plemented with other models to estimate temperature, partial
melting, water content, and rock composition (e.g., Romanowicz
and Mitchell, 2007; Carcione et al., 2020a). A limitation is that
the approach is only valid for low crack densities. Hence, it is
relevant to extend the model to high crack densities (e.g., Benites
et al., 1992). Moreover, we consider the dissipation of a normally
incident P wave. In this sense, extension to the anisotropic case is
required, as well as to consider the effect of WIFF and squirt flow
(e.g., Carcione et al., 2018a, 2018b), mostly affected by the fluid
viscosity.
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Figure 6. (a) Phase velocity and (b) dissipation factor of P waves as
a function of |kra| for three different values of & = nya® and per-
meable boundary condition.
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Figure 7. Same as Figure 6, but with impermeable boundary con-
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Figure 8. (a) Phase velocity and (b) dissipation factor of P waves as
a function of |kra| for the scattering model, and permeable and
impermeable cases with K;=2.11GPa, ay = 260.5 x 1079°K!,
and € = 0.09.

CONCLUSION

We have developed an effective aligned-crack model to obtain the
frequency-dependent phase velocity and attenuation of P waves
scattered by a sparse distribution of fluid-saturated cracks in a ther-
moelastic medium, assuming permeable and impermeable boun-
dary conditions at the crack surface. The examples show that the
WITF mechanism and elastic scattering dominate the dissipation
at low and high frequencies, respectively. The WITF and scattering
attenuation peaks occur when the thermal wavelength or the elastic
wavelength is of the same order of the crack size, respectively. Per-
meable and impermeable crack interfaces display a similar behavior
of dispersion and attenuation, which decrease with the crack-filling
fluid bulk modulus. The impermeable case (the lack of diffusion of
the thermal flux at the crack interface) shows a weaker attenuation
and a reduced frequency range of the WITF mechanism. The effect
of fluid thermal properties, such as the thermal expansion coeffi-
cient, is similar to that of the compressibility in the impermeable
case, and it shows no effect in the permeable case. In principle,

MR217

it is feasible to estimate the thermoelastic properties and the size
of the heterogeneities from seismic attributes, based on the pro-
posed model.
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