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ABSTRACT
Thermoelastic attenuation of P waves is due to energy conversion to the
heat mode, which is diffusive at low frequencies and wave-like at high fre-
quencies, behaving similarly to the Biot slow mode. The conversion is
strong in highly heterogeneous media. We consider a layered medium
with a random distribution of thermal properties, specifically the Gr€uneisen
ratio, and obtain the phase velocity and quality factor. The relaxation peak
of the random medium is wider than those of a periodic sequence of
layers and the Zener mechanical model. Indeed, a Cole–Cole fractional
model is needed to obtain a good match. These approximations are
required to compute wave fields in heterogeneous media. Moreover, the
solutions are helpful for studying the physics of thermoelasticity and test-
ing numerical algorithms for wave propagation.
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1. Introduction

Thermoelasticity extends the classical elasticity theory by coupling the elastic-displacement and
temperature fields, describing the conversion from mechanical energy (e.g., waves) to heat and
vice versa. This conversion implies a high level of wave attenuation and velocity dispersion in
heterogeneous media, a phenomenon that is of interest in geophysics [1–4].

Ref. [5] established the classical theory of thermoelasticity based on the Fourier law of heat
conduction, but the theory predicts infinite wave velocities because it is based on a parabolic-type
heat equation. Many researchers have developed models to avoid this anomalous behavior by
introducing a relaxation term, specifically, the thermoelasticity model proposed by Lord and
Shulman in 1967 (L–S) [6], Green and Lindsay in 1972 (G–L) [7], Green and Naghdi in 1993
(G–N) [8], Hetnarski and Ignaczak in 1996 (H–I) [9], Chandrasekharaiah (1998) and Tzou
(1995) (C–T) [10, 11]. Recently, Ref. [12] obtained the wave velocities and simulated wavefields
based on the L–S model, and Ref. [13] generalized the model to the poroelastic case. Ref. [14]
and Ref. [15] derived the Green function of the L–S thermoelasticity and thermo-poroelasticity
theories, respectively, and Ref. [16] established a thermo-poroelasticity theory based on the L–S
and G–L theories. The single-medium theory predicts three kinds of waves, namely, a fast P wave
(E), a slow thermal P wave (T) and a shear wave (S), while the poroelasticity theory has, in
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addition, the slow P (Biot) mode. The T wave has characteristics similar to those of the slow Biot
mode [12, 14], i.e., diffusive at low frequencies and wave-like at high frequencies.

Formally, the equations of thermoelasticity and poroelasticity have similar structures, since
temperature is mathematically equivalent to fluid pressure [17, 18], Ref. [19] extended this formal
analogy to attenuation and dispersion [20]. Because the seismic wavelength is much larger than
the grain size, a local isostress condition holds, but the presence of different minerals, cracks and
cavities induce uneven deformations or strains. This gives rise to temperature variations and
related local gradients [21]. Ref. [3] discussed the solution of thermoelastic attenuation of an elas-
tic wave by cracks, while Ref. [4] considered finely layered media. Recently, Ref. [20] analyzed
the cases of spherical and cylindrical pores and thin periodic layers, and obtained the respective
relaxation peaks of wave attenuation, as well as the velocity dispersion from the Kramers–Kronig
relations. However, sedimentary strata present a random distribution of properties. Therefore, we
consider the more realistic case of layers with a random distribution of the Gr€uneisen ratio, i.e.,
the thermal coefficient to the specific heat ratio. Moreover, the implementation of the physics of
wave propagation into numerical modeling in the space-time domain requires approximations by
using Zener and Cole–Cole models [22, 23].

The paper is organized as follows. First, we establish the analogy between the diffusion equa-
tions of poroelasticity and thermoelasticity, and set the solution proposed by Ref. [4] for a ran-
dom system. Then, we obtain the attenuation and phase velocity based on the Kramers–Kronig
relations [24, 25]. Finally, we approximate the relaxation peak with those of the Zener and
Cole–Cole models, and present examples.

2. Thermoelasticity theory

2.1. Equations of motion

The stress-strain relation in isotropic media is

rij ¼ 2l�ij þ ðkuk, k � bTÞdij þ fij, (1)

Figure 1. Periodic medium with two flat slabs of dissimilar property (a), general random medium (b), and random media with
two (c) and three (d) slabs of dissimilar property. All the layers have the same thickness h.
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where rij are the stress components, T is the increment of temperature above a reference absolute
temperature T0, k and l are the Lam�e constants, b ¼ ð3kþ 2lÞa, where a is the coefficient of
thermal expansion, fij are external stress forces, dij are Kronecker-delta components, and

2�ij ¼ ui, j þ uj, i, (2)

where ui and �ij are the components of displacement and strain, respectively.
On the other hand, the equations of momentum conservation are

rji, j ¼ q€ui þ fi, (3)

where fi are external body-force components, q is the mass density, and a dot above a variable
denotes time differentiation.

Equations (1) and (3) are complemented by that of heat conduction:

cDT ¼ c _T þ bT0 _�, (4)

where c is the coefficient of thermal conductivity, c is the specific heat of the unit volume in the
absence of deformation, D is the Laplacian operator, and � is the strain tensor.

There is a mathematical analogy between thermoelasticity and poroelasticity that holds for
temperature and fluid pressure, since both fields obey a diffusion equation. Local gradients of

Figure 2. Dissipation factor (a) and phase velocity (b) of P waves as a function of frequency for the periodic case and several
layer thicknesses.
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these fields induce attenuation and dispersion of elastic waves [19, 20]. Basically, the slow Biot
mode is equivalent to the T wave. In thermoelasticity, we obtain a thermal diffusivity dt ¼
c=ðcþ b2T0=EÞ, where E ¼ kþ 2l, and heat currents induced by stress waves have a diffusion
length L ¼ ffiffiffiffiffiffiffiffiffiffi

dt=x
p

, where x ¼ 2pf is the angular frequency, f is frequency. When this length has
the size of the cavities or layers, wave attenuation is maximum, dictating the location of relax-
ation peaks in the frequency domain.

2.2. Quality factor

Thermoelastic damping in polycrystals was explored by Ref. [21]. In this context, Ref. [26]
described bulk dissipation within the inner core of the Earth [27]. Since the structure of sedi-
mentary strata is generally approximated by a layered medium [28], Ref. [20] presented a canon-
ical analytical solution of thermoelastic attenuation for periodic layering. A more realistic case is
to consider random variations of the thermal properties [4]. The solution is given in Appendix A
for a random distribution of the Gr€uneisen ratio, Appendix B and C illustrate approximations
based on the Zener and Cole–Cole models, respectively.

Figure 3. Dissipation factor (a) and phase velocity (b) of P-waves as a function of frequency for the random (black-solid) and
periodic (red-dashed) cases consisting of two media. The thickness is h¼ 0.8mm.
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2.3. Phase velocity

We obtain the phase velocity and stiffness modulus by using an approximation reported by Ref.
[24] based on the Kramers–Kronig relations [20]. The phase velocity is given by

vpðxÞ
v0

¼
�
1� 1

p

ðx
x0

Q�1ðx0Þ
x0 dx0

��1

, (5)

where v0 is the reference velocity at x0, which can be assumed as a very low-frequency value
ðx0 � 0Þ: The complex wave modulus can be obtained from the phase velocity and Q factor as

MðxÞ � qv2pðxÞ
�
1þ i

QðxÞ
�
, (6)

where i ¼ ffiffiffiffiffiffiffi�1
p

:

3. Examples

We consider the solution for the P-wave quality factor of a sequence of layers with a periodic
and random distribution of the properties, corresponding to the solution reported by Ref.[4, Eqs.
(26 and 54)] (see Appendix A). As shown in Figure 1, different shades of gray represent different

Figure 4. Dissipation factor (a) and phase velocity (b) of P-waves as a function of frequency for the random case (black-solid).
The thickness is h¼ 0.8mm. The Zener (red-dotted) and Cole–Cole (black-dashed) curves are shown.
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media, where only the Gr€uneisen ratio (C) varies. Figure 1a shows a periodic sequence of flat
slabs of equal thickness h with properties labeled [1] and [2] (two media). Figure 1b illustrates a
random model in which the thermoelastic properties of each slab are allowed to be different and
their thickness is h.

Figure 2 displays the dissipation factor and phase velocity of the P waves as a function of fre-
quency for the periodic case. Increasing the thickness (h¼ 1, 2 and 5mm), the peak of attenu-
ation moves to the low frequencies, without affecting the peak quality factor, and the velocity of
the full frequency band increases gradually, while the low- and high-frequency limits velocity are
the same.

The slabs of the random model can be arranged as shown in Figures 1c and 1d, containing
two and three different media, respectively. Basically, the proportion of media 1 and 2 in Figure
1c is the same as in Figure 1a (stationarity). For a uniform layer thickness, QR in Eq. (A.1) can
be obtained exactly, giving QP0/2. Let us consider the model with two slabs of different properties.
We assume the following properties: T0 ¼ 300K, K¼ 39GPa, q¼ 2650 kg m� 3, c¼ 106� 106 kg
m� 2 s� 2 K– 1, c¼ 532m kg s� 3 K– 1 and l¼ 39GPa. The two layers have C1 ¼ 1.1 and C2 ¼
2, and the thickness of each sheet is h¼ 0.8mm for the periodic and random cases. Figure 3
compares the periodic and random cases (related to Figures 1a and 1c) showing that in the
second case, the peak is wider, shifted to low frequencies and asymmetric, the cases are similar to

Figure 5. Dissipation factor (a) and phase velocity (b) of P-waves as a function of frequency for the random case and several
layer thicknesses (black-solid curves). The dashed-red curves correspond to the Cole–Cole model.
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the experimental result in Ref. [29], that is, the trend and symmetry of curve. This is probably
due to the further distribution in grain size, along with the neglected effect of elastic modulus
relaxtaion [4]. The velocities coincide at the low-frequency limit.

Next, we consider the model shown in Figure 1d, the Gr€uneisen ratio C1 ¼ 1.1, C2 ¼ 2,
C3¼1.5, and h¼ 0.8mm. Figure 4 compares the quality factors and phase velocities obtained with
the random model to those of the Zener and Cole–Cole models, where we observe that the
second provides a better approximation. We have used f0 ¼ 4.43Hz, Q0 ¼ 27.5, and r¼ 0.6. The
Zener model matches the maximum value and location of the peak, but not its shape. The differ-
ences of Cole–Cole model from those of Zener model are explained using nonlinear internal fric-
tion within the rock [37], therefore, the Cole–Cole model gives a better fitting result and a better
description of the physics of attenuation and dispersion [38].

Figure 5 illustrates the effect of the layer thickness and comparisons to the Cole–Cole model.
Increasing the thickness (h¼ 0.1, 0.5, and 1mm), the peak moves to the low frequencies, without
affecting the peak quality factor, in agreement with results presented by Ref. [4, Eq. 54]. The
Cole–Cole model parameters are: f0 ¼ 285Hz, 11.4Hz and 2.9Hz for h¼ 0.1, 0.5, and 1mm,
respectively, r¼ 0.58 and Q0 ¼ 27.5. The velocities show the same low- and high-frequency limits
irrespective of the thickness.

Figure 6. Dissipation factor (a) and phase velocity (b) of P-waves as a function of frequency for the random case (black solid).
The thickness is h¼ 1mm. The Zener (red-dotted) and Cole–Cole (black-dashed) curves are shown. The thermoelastic properties
correspond to the Earth’s mantle [30].
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Finally, we consider a realistic set of properties with three layers, related to the Earth’s mantle
and based on Table 5 in Ref. [30] (MgSiO3 perovskite). We assume T0 ¼ 500 K, a¼ 0.00218K– 1,
K¼ 257.9GPa, q¼ 4087 kg m� 3, c¼ 415.65� 106 kg m� 1 s� 2 K– 1, c¼ 20.5m kg s� 3 K– 1 [31]
and l ¼ 3K=5 (a Poisson medium). Moreover, C1 ¼ 1:37, C2 ¼ 1:8 and C3 ¼ 1:5, with
h¼ 1mm. Figure 6 shows the results compared to those of the phenomenological Zener and
Cole–Cole models. The peak quality factor is 1000=10:98 � 91 at a frequency of 0.11Hz, which is
consistent with the experimental values for the mantle [32, 33].

4. Conclusions

We have obtained analytical solutions of thermoelastic wave propagation in finely layered media
with periodic and random variations of the thermal properties, specifically, the Gr€uneisen ratio.
The solutions provide the quality factor and phase velocity as a function frequency, the latter
computed with the Kramers–Kronig relations. The results are compared to those of the phenom-
enological Zener and Cole–Cole models, with the last one showing a very good fit. These approx-
imations are required to compute wave fields in the space-time domain, using memory variables
in the first case and fractional derivatives in the second case. For a succession of thin layers with
a random distribution, the relaxation peak is wider and asymmetric compared to the ideal peri-
odic case. In all the examples, the relaxation frequency of the random case is lower than that of
the periodic case. An example based on realistic thermoelastic properties (Earth’s mantle) gives a
P-wave quality factor in agreement with experimental data.

Appendix A thermoelastic attenuation

We consider a periodic system of alternating layers (slabs) each with thickness h, much smaller than the signal
wavelength. We assume that the attenuation is small, that is, Q � 1: Ref. [4] obtained the relaxation peak caused
by the passage of a P wave when a temperature gradient is induced. For clarity, we compare our notation with
that of Armstrong. The equivalence is T $ T0, qc2 $ E, cv $ c, c $ C, v $ c=c, X $ x, s $ h, s=d $ q and
j $ c, where the left-hand side properties correspond to those of Armstrong. He presents the equations for the
case where only the (dimensionless) Gr€uneisen ratio

C ¼ b
c

(A.1)

varies. Continuity of temperature and thermal current at the interfaces is required.
For periodic layering, the P-wave quality factor is

QP ¼ qðcoshqþ cos qÞ
sinhq� sin q

� QP0, q ¼ h
ffiffiffiffiffiffi
xc
2c

r
, (A.2)

where

QP0 ¼ 4E

cT0ðC2 � C1Þ2
,E ¼ K þ 4

3
l, (A.3)

where K ¼ kþ 2l=3 is the bulk modulus and E is the relaxed P-wave modulus.
For random variations of the Gr€uneisen ratio, Cj, j ¼ 1, :::, L (L is the number of slabs where the average is

applied), we have

QP ¼ q
3
� 1� exp ð�qÞð sin qþ cos qÞ� ��1 � QR, (A.4)

where

QR ¼ 2E

cT0 hðC� �CÞ2 i , (A.5)

where �C is the volume average obtained from the single Cj and the brackets take a volume average over all
the layers.
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Appendix B Zener mechanical model

The Zener or standard-linear-solid model can be used to approximate the quality factors. The complex modulus of
the Zener model is

Mðf Þ ¼ Q0 þ iðf=f0ÞðRþ 1Þ
Q0 þ iðf=f0ÞðR� 1Þ �M0,R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

q
, (B.1)

where f0 is the relaxation frequency, Q0 is the minimum quality factor at f0, M0 is the zero-frequency modulus, f is
the frequency and i ¼ ffiffiffiffiffiffiffi�1

p
: The unrelaxed modulus ðf ! 1Þ is M1 ¼ ½ðRþ 1Þ=ðR� 1Þ�M0, and the following

relations hold, Q0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0

p
=ðM1 �M0Þ, so that the modulus dispersion M1 �M0 can approximately be

obtained from Q0. Equation (B.1) was established by Ref. [34] for a rod of arbitrary cross-section vibrating trans-
versely, where M0 and M1 correspond to the isothermal and adiabatic moduli, respectively [35, 36, Eq. 3.41].

The Zener Q factor is

QðzÞ ¼ ReðMÞ
ImðMÞ ¼

Q0

2
� 1þ ðf=f0Þ2

f=f0
, (B.2)

and the phase velocity is

vp ¼ Re
1
vc

� �� ��1

, vc ¼
ffiffiffiffiffi
M
q

s
, (B.3)

where vc is the complex velocity [36].

Appendix C Cole–Cole model

The Zener model can be generalized by using the Cole–Cole model [36], which involves derivatives of fractional
order and is used to describe dispersion and energy loss in dielectrics, anelastic media and electric networks. The
complex modulus of a Cole–Cole element is

MðxÞ ¼ M0 � 1þ ðixs�Þr
1þ ðixsrÞr ,x ¼ 2pf , (C.1)

where 0 < r < 2 is a real number (the order of the derivative), the relaxation times are

s� ¼ a1=r

2pf0
, and sr ¼ a�1=r

2pf0
, (C.2)

where

a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

p
sin/

Q0 sin/� cos/
,/ ¼ pr

2
: (C.3)

The quality factor has a minimum value located at f0 ¼ ½2p ffiffiffiffiffiffiffiffi
s�sr

p ��1, as in the Zener case. The unrelaxed modulus
is M1 ¼ M0ðs�=srÞr: When r¼ 1, we obtain the Zener model. This additional parameter is closely related to the
width of the relaxation peak and allows us to fit better the thermoelastic relaxation peak.
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