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S U M M A R Y
The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity,
describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical be-
haviour of the thermoelastic waves present in the classical theory based on a parabolic heat
equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the
classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the
frequency-domain Green’s function in homogeneous media as the displacements-temperature
solution of the thermo-poroelasticity equations. The numerical examples validate the presence
of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat
diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a
diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In
heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conver-
sion to the slow modes. The Green’s function is useful to study the physics in thermoelastic
media and test numerical algorithms.

Key words: Heat flow; Seismic attenuation; Wave propagation.

1 I N T RO D U C T I O N

The study of the geomechanical properties of non-isothermal media is an important subject in many fields. The theory of thermoelasticity
couples elastic deformations with the temperature field, based on the thermodynamics of irreversible processes (Biot 1956a; Deresiewicz
1957). The classical theory of poroelasticity has been established by Biot 1956b, 1962) for two-phase fluid-saturated porous media based on
the Lagrange equations and Hamilton principle, which predicts the existence of a slow P wave (the Biot wave) besides the classical P and S
waves. It has been verified experimentally (e.g. Plona 1980; Kelder & Smeulders 1997). The Biot wave is diffusive at low frequencies and
has a lower velocity than that of the fast P wave at high frequencies.

Thermo-poroelasticity is an extension of the classical Biot theory, which combines the equation of heat conduction with the poroelasticity
equations to describe the interaction between the displacement and temperature fields in porous media (Noda 1990; Nield & Bejan 2006). Bear
et al. (1992) and Sharma (2008) developed mathematical models for wave propagation. The theory, if applied to heterogeneous media, also
describes the important mechanism of wave-induced mesoscopic attenuation due to the presence of the elastic and thermal slow modes, which
behave wave-like at high frequencies (Carcione et al. 2019, 2020). The thermal mode is diffusive for low values of the thermal conductivity
and becomes wave-like for high values of this property. Compared to the uncoupled case (isothermal case), the fast P wave propagates at
higher velocities and the S wave is not affected by the thermal flow. The theory is relevant in geophysical and geothermal exploration (Treitel
1959; Armstrong 1984; Cermak et al. 1990; Fu 2012, 2017; Jacquey et al. 2015; Poletto et al. 2018), and earthquake seismology (e.g.
Boschi 1973; Simmons et al. 2010; Ritsema et al. 2011). In this work, we obtain the Green’s function of thermo-poroelasticity, based on the
Lord–Shulman theory.

The governing equation of thermoelasticity based on the parabolic-type equation of heat conduction has unphysical solutions such as
discontinuities and infinite velocities as a function of frequency. As shown by Carcione et al. (2018), the heat equation can be generalized
in analogy with the Maxwell model of viscoelasticity and the unphysical behaviour can be avoided by introducing relaxation terms into
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the heat equation, usually termed the Lord–Shulman model with a relaxation time (Lord & Shulman 1967; Green & Lindsay 1972; Eslami
et al. 2013). Based on the Lord–Shulman thermoelasticity equations, Rudgers (1990) analyzed the physics and Carcione et al. (2018, 2019)
generalized this theory to the poroelastic case and provided further insight into the physics by numerical simulations. A plane-wave analysis
of the thermo-poroelasticity equations predicts the presence of a slow thermal wave (T wave) besides the classical P and S waves and Biot
slow P wave. The presence of a slow T mode has been verified experimentally in solid helium and NaF crystals (e.g. Ackerman et al. 1966;
Jackson et al. 1970; McNelly et al. 1970).

The Green’s function plays an important role in many applications (e.g. Norris 1994; Fu & Bouchon 2004; Yang et al. 2007; Hu et al.
2009; Yu & Fu 2013; Wei & Fu 2019). There are many works, concerning classical thermoelasticity (e.g. Nowacki 1975; Kupradze et al.
1976; Tosaka 1985; Tosaka & Suh 1991), including Scarpetta et al. (2014) who obtained the Green’s function for double-porosity media.
Regarding the extended theory (hyperbolic heat equation), Wang et al. (2019) formulated a second-order tensor Green’s function for the
Lord–Shulman thermoelasticity equations.

In this work, we obtain the Green’s function for the Lord–Shulman thermo-poroelasticity equations by means of elementary functions
(Scarpetta 1990). First, we follow Carcione et al. (2019) and perform a plane-wave analysis to obtain the velocity and attenuation as a function
of frequency. Then, we formulate the frequency-domain Green’s function and, finally, wavefield snapshots are computed to further illustrate
the physics.

2 T H E O RY O F T H E R M O - P O RO E L A S T I C I T Y

The classical theory of thermo-poroelasticity is based on a parabolic equation of heat conduction, leading to infinite phase velocities. The
modified equations with a relaxation term (Carcione et al. 2019) are briefly introduced in this section, which are the basis to develop the
frequency-domain Green’s function for wave propagation in non-isothermal porous media.

2.1 Equations of modified thermo-poroelasticity

The constitutive relations of thermo-poroelasticity for the stress components of the frame σi j and pore-fluid pressure p f are (Carcione et al.
2019)⎧⎪⎨
⎪⎩

σi j = λδi j uk,k + μ
(
ui, j + u j,i

) + αMδi j (αuk,k + wk,k) − βδi j T

− p f = M (αui,i + wi,i ) − β f

φ
T

, (1)

where λ and μ are the Lamé constants of the drained matrix, δi j is the Kronecker-delta, φ is the porosity, T is the increment of temperature
over a reference T0, ui are the displacement components in the solid phase, Ui are the displacement components of the fluid phase,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α = 1 − Km

Ks
, Km = λ + 2

3
μ

M = Ks

1 − φ − Km

Ks
+ φ

Ks

K f

wi = φ (Ui − ui ) , β = βs + αβ f

, (2)

where Ks and K f are the solid and fluid bulk moduli, respectively, and βs and β f are the coefficients of thermal stress for the solid and fluid
phases, respectively.

The dynamical equations are (Carcione et al. 2019)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σi j, j = ρüi + ρ f ẅi(−p f

)
,i

= ρ f üi + qẅi + rẇi

γ T,i i = ρCe

(
Ṫ + τ0T̈

) + βT0

[
(u̇i,i + ẇi,i ) + τ0 (üi,i + ẅi,i )

] , (3)

where γ is the coefficient of heat conduction, Ce is the specific heat capacity, q = τρ f /φ , with τ the tortuosity and τ0 is the relaxation time.
The quantity ρ = (1 − φ) ρs + φρ f is the composite density with ρs and ρ f the solid and fluid densities, respectively. The Darcy law defines
the movement of viscous fluids of viscosity η in the frame of permeability χ , and r = η/χ .

Thus, the non-isothermal wave equations for isotropic porous media saturated with a viscous fluid are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρüi + ρ f ẅi = (
λ + μ + α2 M

)
u j,i j + μui, j j + αMw j,i j − βT,i

ρ f üi + qẅi + r ẇi = M
(
αu j,i j + w j,i j

) − β f

φ
T,i

γ T,i i = ρCe

(
Ṫ + τ0T̈

) + βT0

[
u̇i,i + ẇi,i + τ0 (üi,i + ẅi,i )

] . (4)
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2.2 Plane-wave analysis

To examine the characteristics of wave propagation in thermo-poroelastic media, we consider the following plane-wave expressions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui = Asi e
iω

(
t− l j

vc
x j

)

wi = Bdi e
iω

(
t− l j

vc
x j

)

T = Ce
iω

(
t− l j

vc
x j

) , (5)

where si and di are the polarizations for the motions of the solid and fluid particles, respectively, A, B and C are amplitude constants, ω is
the angular frequency, t is the time, vc is the complex velocity, l j denotes the propagation directions, x j are the position components and
i = √−1 .

Substituting eq. (5) into (4) yields a system of algebraic equations,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
λ + μ + α2 M

) (
ω

vc

)2

As j l j li + αM

(
ω

vc

)2

Bd j l j li + μ

(
ω

vc

)2

Asi − ρω2 Asi − ρ f ω
2 Bdi − i

ω

vc
βC li = 0

M

(
α

(
ω

vc

)2

As j l j li +
(

ω

vc

)2

Bd j l j li

)
− ρ f Aω2si − q Bω2di + r iωBdi − i

β f

φ

ω

vc
C li = 0

ρCe

(
iωC − τ0ω

2C
) + βT0

[
ω

vc
ωAsi li + ω

vc
ωBdi li + τ0

(
i
ω

vc
ω2 Asi li + i

ω

vc
ω2 Bdi li

)]
+ γ

(
ω

vc

)2

C = 0

. (6)

For S waves, si li = di li = 0, and the direction of propagation is perpendicular to the direction of displacement, and

vS
c =

√√√√ μ

ρ − ρ2
f

q−i r
ω

. (7)

We see that S-wave propagation is independent of the thermal properties in isotropic thermo-poroelastic media.
For P waves, si li = di li = 1, and the direction of propagation is parallel to the direction of displacement. The resulting dispersion

relation can be solved by a cubic equation in v2
c as

a
(
v2

c

)3 + b
(
v2

c

)2 + cv2
c + d = 0, (8)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = ρCeφN (ωL − irρ)

b = iφr K − ω (rφ (γρ + τ0 K ) + φρCe H + T0β J ) − iω2 (φ (γ L + ρCe Hτ0) + T0β Jτ0)

c = ω (φ (ρCe M E + rγ F) + T0βG) + iω2 (φ (γ H + ρCe M Eτ0) + T0βGτ0)

d = −iω2γφM E

, (9)

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E = λ + 2μ, F = E + α2 M, G = Eβ f + M (α − 1)
(
αβ f − φβ

)
H = q F + ρM − 2αMρ f , J = β f

(
ρ − ρ f

) + φβ
(
q − ρ f

)
, K = ρCe F + T0β

2

L = qρ − ρ f
2, N = 1 + iωτ0

. (10)

We see that the fast P waves are dissipative due to the coupling with the Biot and heat flow.

3 G R E E N ’ S F U N C T I O N F O R T H E R M O - P O RO E L A S T I C I T Y

We formulate the frequency-domain Green’s function for thermo-poroelasticity. We first apply a Fourier transform to eq. (4),

ū
(

⇀

x, ω
)

=
∞
∫

−∞
u

(
⇀

x, t
)

e−iωt dt, (11)

leading to the following differential equations in the frequency domain (omitting the hat for convenience):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1u j,i j + μui, j j + ρω2ui + αMw j,i j + ρ f ω
2wi − β T,i = 0

M
(
αu j,i j + w j,i j

) + ρ f ω
2ui + a2wi − β f

φ
T,i = 0

γ T,i i + ρCea3T + βT0a3 (ui,i + wi,i ) = 0

, (12)

where a1 = λ + μ + α2 M , a2 = qω2 − iωr and a3 = τ0 ω2 − iω.
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To derive the Green’s function for eq. (12), we introduce the following matrix differential operator based on eq. (12):

A (∇) =

⎡
⎢⎢⎣

a1∇div + μ� + ρω2 αM∇div + ρ f ω
2 −βdiv

αM∇div + ρ f ω
2 M∇div + a2 −β f

φ
div

βT0a3∇ βT0a3∇ γ� + ρCea3

⎤
⎥⎥⎦ , (13)

where div is the divergence symbol, and consider the system of non-homogeneous equations:⎡
⎢⎢⎢⎢⎣

a1∇div + μ� + ρω2 αM∇div + ρ f ω
2 βT0a3∇

αM∇div + ρ f ω
2 M∇div + a2 βT0a3∇

−βdiv −β f

φ
div γ� + ρCea3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

⇀

u

⇀

w

T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

⇀

f 1

⇀

f 2

f3

⎤
⎥⎥⎥⎥⎦ , (14)

or

AT (∇)
⇀

α =
⇀

b , (15)

where AT(∇) is the transpose of matrix differential operator A(∇),

AT (∇) =

⎡
⎢⎢⎢⎣

a1∇div + μ� + ρω2 αM∇div + ρ f ω
2 βT0a3∇

αM∇div + ρ f ω
2 M∇div + a2 βT0a3∇

−βdiv − β f

φ
div γ� + ρCea3

⎤
⎥⎥⎥⎦ ,

⇀

α =

⎡
⎢⎣

⇀

u
⇀

w

T

⎤
⎥⎦ , and

⇀

b =

⎡
⎢⎣

⇀

f 1
⇀

f 2

f3

⎤
⎥⎦ ,

⇀

f 1 and
⇀

f 2 are two-component vector functions and f3 is a scalar function.
Applying the divergence operator to the first and second terms of eq. (14), we obtain

B (�)
⇀

β = ⇀

c , (16)

where

B (�) =

⎡
⎢⎢⎢⎣

a0� + ρω2 αM� + ρ f ω
2 βT0a3�

αM� + ρ f ω
2 M� + a2 βT0a3�

−β − β f

φ
γ� + ρCea3

⎤
⎥⎥⎥⎦ , with a0 = a1 + μ,

⇀

β =

⎡
⎢⎢⎢⎣

div
⇀

u

div
⇀

w

T

⎤
⎥⎥⎥⎦ , and

⇀

c =

⎡
⎢⎢⎢⎢⎣

div
⇀

f 1

div
⇀

f 2

f3

⎤
⎥⎥⎥⎥⎦ .

By introducing the operator

�1 (�) = 1

γ Ma0
detB (�) =

3∏
i=1

(
� + λ2

i

)
,

the following equation

�1 (�)
⇀

β = ⇀

g (17)

can be obtained from eq. (16), where

g j = 1

γ Ma0

3∑
i = 1

B∗
i j (�) ci , (18)

with B∗
i j (�) the cofactor of the element Bi j (�) of matrix B(�).

From the first and second terms of eq. (14), we have⎧⎨
⎩

(
μ� + ρω2

) ⇀

u + ρ f ω
2 ⇀

w =
⇀

f 1 − a1∇β1 − αM∇β2 − βT0a3∇β3

ρ f ω
2⇀

u + a2
⇀

w =
⇀

f 2 − M (α∇β1 + ∇β2) − βT0a3∇β3

. (19)
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Then, we apply the divergence operator �1(�) to eq. (19) to yield

C (�)
⇀

γ =
⇀

d , (20)

where

C (�) =
⎡
⎣μ� + ρω2 ρ f ω

2

ρ f ω
2 a2

⎤
⎦ ,

⇀

γ =
⎡
⎣�1 (�)

⇀

u

�1 (�)
⇀

w

⎤
⎦ , and

⇀

d =
⎡
⎣�1

⇀

f 1 − a1∇g1 − αM∇g2 − βT0a3∇g3

�1

⇀

f 2 − M (α∇g1 + ∇g2) − βT0a3∇g3

⎤
⎦ .

By introducing the operator

�2 (�) = �1 (�)

μa2
detC (�) = �1 (�)

(
� + λ2

4

)
, (21)

where

λ2
4 = ρω2

μ
− ρ f

2ω4

a2μ
,

the following equation

1

μa2
detC (�)

⎡
⎣�1 (�)

⇀

u

�1 (�)
⇀

w

⎤
⎦ =

⎡
⎣�2 (�) 0

0 �2 (�)

⎤
⎦

⎡
⎣⇀

u

⇀

w

⎤
⎦ =

⎡
⎣h1

h2

⎤
⎦ , (22)

can be obtained from eqs (17), (20) and (21), where

h j = 1

μa2

2∑
i = 1

C∗
i j (�) di , (23)

with C∗
i j (�) being the cofactor of the element Ci j (�) of matrix C(�).

On the basis of eqs (17) and (22), we have

� (�)
⇀

α = ⇀

m , (24)

where

� (�)
⇀

α =

⎡
⎢⎢⎢⎣

�2 (�) 0 0

0 �2 (�) 0

0 0 �1 (�)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

⇀

u

⇀

w

T

⎤
⎥⎥⎥⎦ , and

⇀

m =

⎡
⎢⎢⎢⎣

h1

h2

g3

⎤
⎥⎥⎥⎦ .

From eqs (18) and (23),
⇀

m can be expanded as follows:

⇀

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

μa2

2∑
i=1

C∗
i1 (�) di

1

μa2

2∑
i=1

C∗
i2 (�) di

1

γ Ma0

3∑
i=1

B∗
i3 (�) ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

We separate eq. (25) into the following operator product form

⇀

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

C∗
11

μa2

C∗
21

μa2
0

C∗
12

μa2

C∗
22

μa2
0

0 0
I

γ Ma0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1

⇀

f 1 − a1∇g1 − αM∇g2 − βT0a3∇g3

�1

⇀

f 2 − M (α∇g1 + ∇g2) − βT0a3∇g3

B∗
13div

⇀

f 1 + B∗
23div

⇀

f 2 + B∗
33 f3

⎤
⎥⎥⎥⎥⎦ . (26)

Using to eq. (18), eq. (26) can be expressed as
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Table 1. Material properties.

Grain bulk modulus, K s 35 GPa
Density, ρs 2650 kg m−3

Frame bulk modulus, K m 1.7 GPa
Shear modulus, μm 1.885 GPa
Porosity, φ 0.3
Permeability, χ 1 darcy
Tortuosity, τ 2

Water density, ρ f 1000 kg m−3

Viscosity, η 0.001 Pa · s
Bulk modulus, K f 2.4 GPa
Thermoelasticity coefficient, β f 40 000 kg (m · s2 · deg K)−1

Bulk specific heat capacity, Ce 0.38 m2 (s2 · deg K)−1

Thermoelasticity coefficient, β 120 000 kg (m · s2 · deg K)−1

Absolute temperature, T 0 300 ◦K

Figure 1. Phase velocity and attenuation factor of the P wave (a and b), slow P wave (c and d) and T wave (e and f) as a function of frequency for different
thermal conductivities.
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Figure 2. Phase velocity and attenuation factor of the P wave (a and b), slow P wave (c and d) and T wave (e and f) as a function of frequency for different
relaxation times.

Figure 3. Phase velocity and attenuation factor of the S wave (a and b) as a function of frequency.
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Figure 4. (a) Particle-velocity uz at 50 ms with η = 0 due to a heat source and (b) temperature T at 50 ms with η = 0 due to a vertical elastic force for
γ = 5 m · kg (s3 · deg K)−1 with τ0 = 1.5 × 10−8 s.

⇀

m =

⎡
⎢⎢⎢⎢⎢⎣

C∗
11

μa2

C∗
21

μa2
0

C∗
12

μa2

C∗
22

μa2
0

0 0
I

γ Ma0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1

⇀

f 1 − 1

γ Ma0

(
a1∇

3∑
i = 1

B∗
i1ci + αM∇

3∑
i = 1

B∗
i2ci + βT0a3∇

3∑
i = 1

B∗
i3ci

)

�1

⇀

f 2 − 1

γ Ma0

(
M

(
α∇

3∑
i = 1

B∗
i1ci + ∇

3∑
i = 1

B∗
i2ci

)
+ βT0a3∇

3∑
i = 1

B∗
i3ci

)

B∗
13div

⇀

f 1 + B∗
23div

⇀

f 2 + B∗
33 f3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

By introducing the following notation:

ni1 (�) = − 1

γ Ma0

(
a1 B∗

i1 (�) + αM B∗
i2 (�) + βT0a3 B∗

i3 (�)
)
,

ni2 (�) = − 1

γ Ma0

(
M

(
αB∗

i1 (�) + B∗
i2 (�)

) + βT0a3 B∗
i3 (�)

)
and ni3 (�) = 1

γ Ma0
B∗

i3 (�) ,
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Figure 5. (a) Particle-velocity uz at 50 ms with η = 0 due to a heat source and (b) temperature T at 50 ms with η = 0 due to a vertical elastic force for
γ = 4.5 × 106 m kg (s3 · deg K)−1 with τ0 = 1.5 × 10−2 s.

we have

⇀

m =

⎡
⎢⎢⎢⎢⎣

C∗
11

μa2

C∗
21

μa2
0

C∗
12

μa2

C∗
22

μa2
0

0 0 I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�1 + n11∇div n21∇div n31∇
n12∇div �1 + n22∇div n32∇
n13div n23div n33

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

⇀

f 1

⇀

f 2

f3

⎤
⎥⎥⎥⎥⎦ , (28)

By combining eqs (15) and (28), we obtain the following operator,

LT =

⎡
⎢⎢⎢⎢⎣

C∗
11

μa2

C∗
21

μa2
0

C∗
12

μa2

C∗
22

μa2
0

0 0 I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�1 + n11∇div n21∇div n31∇
n12∇div �1 + n22∇div n32∇
n13div n23div n33

⎤
⎥⎥⎥⎦ , (29)

because

LT
⇀

b = ⇀

m ,
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�
⇀

α = LT AT⇀

α,

thus

AL = �.

We also introduce the matrix

� =

⎡
⎢⎢⎢⎣

�2 0 0

0 �2 0

0 0 �1

⎤
⎥⎥⎥⎦ , (30)

where �1 =
3∑

j=1
η1 jγ

( j)(
⇀

x) and �2 =
4∑

j=1
η2 jγ

( j)(
⇀

x) , with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ ( j)
(

⇀

x
)

= i
4 H (1)

0

(
λ j

∣∣∣⇀

x
∣∣∣) ,

η1 j =
3∏

i=1,i 	= j

(
λ2

i − λ2
j

)−1
,

η2k =
4∏

i=1,i 	=k

(
λ2

i − λ2
k

)−1
,

( j = 1, 2, 3; k = 1, 2, 3, 4)

to constitute the Green’s function of the Helmholtz equation (� + λ2
j )γ

( j) (
⇀

x) = − δ(
⇀

x). According to Scarpetta et al. (2014) (Lemma 1),
we have

AL� = �� = I.

Thus, the Green’s function becomes

V = L�, (31)

where

L =

⎡
⎢⎢⎢⎣

�1 + n11∇div n12∇div n13∇
n21∇div �1 + n22∇div n23∇
n31div n32div n33

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C∗
11

μa2

C∗
12

μa2
0

C∗
21

μa2

C∗
22

μa2
0

0 0 I

⎤
⎥⎥⎥⎥⎦ ,

leading to

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

(�1 + n11∇div)
C∗

11

μa2
�2 + n12∇div

C∗
21

μa2
�2 (�1 + n11∇div)

C∗
12

μa2
�2 + n12∇div

C∗
22

μa2
�2 n13∇�1

n21∇div
C∗

11

μa2
�2 + (�1 + n22∇div)

C∗
21

μa2
�2 n21∇div

C∗
12

μa2
�2 + (�1 + n22∇div)

C∗
22

μa2
�2 n23∇�1

n31div
C∗

11

μa2
�2 + n32div

C∗
21

μa2
�2 n31div

C∗
12

μa2
�2 + n32div

C∗
22

μa2
�2 n33�1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

4 N U M E R I C A L E X A M P L E S

We consider the thermo-poroelastic model with material properties (Table 1) given by Carcione et al. (2019), although the value Ce is actually
low for rocks. A plane-wave analysis and a simulation for wavefield snapshots are conducted in this section to illustrate the dispersion
and attenuation properties of thermo-poroelastic waves. Wave velocity and attenuation are calculated as a function of frequency for two
sets of thermal properties: (1) τ0 = 1.5 × 10−8 s with γ = 1, 5 and 10 m · kg (s3 · deg K)−1 and (2) γ = 10 m · kg (s3 · deg K)−1 with
τ0 = 1.5 × 10−8, 5.5 × 10−8 and 9.5 × 10−8 s. The phase velocity vp = 1/[Re(1/vc)] and the attenuation factor Ap = − 4πvpIm(1/vc)
can be obtained from the complex velocity vc as a function of frequency (see eqs 7 and 8).

Fig. 1 shows the phase velocity and attenuation of thermo-poroelastic waves as a function of frequency for the first set of thermal
properties. We see that the thermo-poroelastic dispersion is of a dual-peak structure in both the phase velocity and quality factor. In general,
the velocity dispersion with frequencies is relevant to intrinsic attenuation. The dual-peak feature of dispersion is strongly associated with
classical Biot loss and heat diffusion. The wave-like T mode has characteristics similar to the Biot slow diffusive wave, since the poroelasticity
and thermoelasticity have similar constitutive relations. Both the slow P and T waves are highly attenuated toward low frequencies. We note
that the second peak in both the phase velocity and attenuation becomes strong with increasing thermal conductivities. In conclusion, the
velocity and attenuation dispersions for P, slow P and T waves increase with increasing thermal conductivities.



Lord–Shulman thermo-elasticity theory 11

Fig. 2 shows the phase velocity and attenuation with frequencies for P, slow P and T waves at different relaxation times. We see that
the second peak in both the phase velocity and attenuation for all the modes is significantly affected by relaxation times, becoming weak
with increasing relaxation times. Nevertheless, the wave-like T mode is prone to be observed in either high thermal conductivities or small
relaxation times within the high-frequency band. Fig. 3 shows the phase velocity and attenuation as a function of frequency for S wave,
obtained from eq. (7). We see that the S wave has only one attenuation peak due to the Biot loss, which is independent of heat diffusion.
We have to stress that the physics of thermo-poroelastic dispersion is rather complex and could be addressed by incorporating laboratory
measurements in the future.

Snapshots are calculated by the Green’s function (eq. 32) for two sets of thermal properties (1) γ = 5 m kg (s3 · deg K)−1 with τ0 =
1.5 × 10−8 s and (2) γ = 4.5 × 106 m · kg (s3 · deg K) with τ0 = 1.5 × 10−2 s. The source, located at the center of the mesh, is a Ricker
wavelet with the central frequency of 150 Hz. The wavefields generated by a heat source and a vertical elastic force at 50 ms with η = 0
are calculated for two sets of thermal properties, with the results shown in Figs 4 and 5, respectively. We observe that the T wave is diffuse
and weak. As expected from Figs 1 and 2, it is hard to see the mode in Fig. 4 with small thermal conductivities, which, however, becomes
obvious in Fig. 5 with large thermal conductivities. Different dilatational waves can be seen in Figs 4 and 5, where the heat source generates
significant compressional waves, but there is no shear wave. The S wave can be generated by the vertical elastic force, but this mode is not
present the temperature field.

5 C O N C LU S I O N S

We have derived the frequency-domain Green’s function of the Lord–Shulman thermo-poroelasticity theory, where the displacement-
temperature fields are obtained for isotropic porous media. Our numerical results clearly show the presence of a slow thermal P wave (the T
wave) besides the classical P and S waves and the diffusive/wave-like Biot P mode. The S wave is not affected by the thermal effects, but the
three P waves exhibit a lossy behaviour under certain conditions, which depends on the viscosity, frequency and thermoelastic constants. In
the seismic frequency band, the T and Biot waves are highly attenuated and are coupled with the fast P wave inducing energy dissipation at
high frequencies.
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λ, μ the Lamé constants of the drained matrix
δi j Kronecker-delta
φ the porosity
T0 the reference absolute temperature
T the increment of temperature over T0

ui the displacement components in the solid phase
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γ the coefficient of heat conduction
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ρs the solid density
ρ f the fluid density
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