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S U M M A R Y
Thermoelasticity extends the classical elastic theory by coupling the fields of particle dis-
placement and temperature. The classical theory of thermoelasticity, based on a parabolic-type
heat-conduction equation, is characteristic of an unphysical behaviour of thermoelastic waves
with discontinuities and infinite velocities as a function of frequency. A better physical system
of equations incorporates a relaxation term into the heat equation; the equations predict three
propagation modes, namely, a fast P wave (E wave), a slow thermal P wave (T wave), and a
shear wave (S wave). We formulate a second-order tensor Green’s function based on the Fourier
transform of the thermodynamic equations. It is the displacement–temperature solution to a
point (elastic or heat) source. The snapshots, obtained with the derived second-order tensor
Green’s function, show that the elastic and thermal P modes are dispersive and lossy, which
is confirmed by a plane-wave analysis. These modes have similar characteristics of the fast
and slow P waves of poroelasticity. Particularly, the thermal mode is diffusive at low thermal
conductivities and becomes wave-like for high thermal conductivities.
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1 I N T RO D U C T I O N

Thermoelasticity is an extension of classical elasticity, which deals with the interaction between the displacement and temperature fields
(Lord & Shulman 1967; Green & Lindsay 1972; Green & Naghdi 1993; Tzou 1995; Hetnarski & Ignaczak 1997; Chandrasekharaiah 1998).
The study of wave propagation in a thermoelastic solid is of fundamental importance in several disciplines such as seismic exploration (Zener
1938; Treitel 1959; Savage 1966; Armstrong 1984), geothermal studies (Jacquey et al. 2015), earthquake seismology (Boschi 1973) and
others (Tsai 2011; Auriault 2014). Hetnarski & Ignaczak (1999) explain the difference theories in terms of the input properties and predicted
waves.

The theory of thermoelasticity has been established by Biot (1956) on the basis of the thermodynamics of irreversible process.
Deresiewicz (1957) applies a plane-wave analysis to investigate propagation of waves in an isotropic thermoelastic solid. Three kinds of
waves propagate, namely, E wave, T wave and S wave. The T wave has been observed in experimental measurements for some specific
materials. Ackerman et al. (1966) observed it in solid helium, while McNelly et al. (1970) and Jackson et al. (1970) detected the T wave
in NaF crystals. However, the longitudinal E and T waves predicted by Biot and Deresiewicz have infinite velocities at infinite frequencies,
since the classical thermoelastic equations are based on a parabolic-type heat transfer equation. This anomalous behaviour can be avoided by
introducing a relaxation term into the heat equation (e.g. Vernotte 1948; Lord & Shulman 1967; Green & Lindsay 1972; Turchetti & Mainardi
1976; Ignaczak & Ostoja-Starzewski 2010). Banerjee & Pao (1974) investigate the propagation of plane harmonic waves in anisotropic
media. Nowacki (1975) constructs the thermodynamic foundation of thermoelasticity systematically and develops the Green function for
anisotropic media, based on the classical thermoelasticity equation with the unrealistic infinite velocity. Similarly, Tosaka (1985) derives
Green’s function for boundary-element analyses based on the same thermoelasticity equation. Rudgers (1990) studies the characteristic of
thermoelastic waves as a function of frequency. Norris (1994) describes a procedure to generate fundamental solutions or the Green functions
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for time harmonic point forces and sources for the theories of piezoelectricity, thermoelasticity and poroelasticity. Bear et al. (1992) and
Sharma (2008) investigate the theory of thermo-poroelasticity. To our knowledge, Carcione et al. (2018, 2019) are the first to simulate
thermoelastic and thermo-poroelastic wave propagation with realistic propagation velocities, including a relaxation term in the heat equation,
that is, the Lord–Shulman theory and its generalization to the poroelastic case. The algorithm is based on the Fourier pseudospectral method,
with the simulations showing the thermal wave and the Biot slow wave.

Many researchers have used Green’s function to study wave propagation in elastic or viscoelastic media, but with few studies on the
Green function in thermoelastic media. The fundamental solutions for the case of isotropic thermoelasticity arekg s−3 K−1 known (Kupradze
et al. 1976). Tosaka & Suh (1991) formulate the Green function based on the classical thermoelastic theory (a parabolic-type heat equation).
Here, we obtain the Green function of the thermoelasticity equations with one relaxation time, based on the theory of Lord & Shulman
(1967) (a hyperbolic-type heat equation). Fundamental solutions (or Green’s functions) play an important role in the numerical solution of
partial differential equations by integral equation methods, and as a test of numerical solutions. First, we analyse the characteristic of the
wave propagation in thermoelastic media by a plane-wave method, the theory predicts two distinct lossy longitudinal waves, that is, E wave
and T wave, whereas the predicted S wave is unaffected by the thermal effects. Then, we formulate the integral equation of the modified
thermoelasticity equations (Hörmander 2013) in the frequency domain and obtain the second-order tensor Green’s function corresponding to
point loadings (force or heat sources) in a homogeneous isotropic material. Finally, we calculate wavefield snapshots to analyse displacements
and temperatures, corresponding to vertical and horizontal loadings (heat sources).

2 E Q UAT I O N S O F T H E R M O E L A S T I C I T Y

Biot (1956) and Deresiewicz (1957) establish the relations between stress, strain and temperature in linear isotropic media. However, their
equations lack the relaxation term in the heat equation, leading to physically unacceptable solutions for the T wave (i.e. infinite phase velocity).
The modified thermoelasticity equations with a relaxation term are (e.g. Carcione et al. 2018) written by using the Einstein implicit summation
as follows:

Strain–displacement relations:

εi j = 1

2

(
ui, j + u j,i

)
, (1)

where ui and εij are the components of displacement and strain, respectively.
Stress–strain relations for isotropic media

σi j = 2μεi j + λδi j uk,k − βδi j T + fi j , (2)

where σ ij are the stress components, λ and μ are the Lamé constants, δij are the Kronecker-delta components, fij are external stress forces,
T is the increment of temperature above a reference absolute temperature T0, and β = (3λ+2μ)α with α being the coefficient of thermal
expansion. Eq. (2) indicates that the temperature-induced elastic variations in stress strongly depend on the coefficient of thermal expansion.

Equations of momentum conservation:

σ j i, j = ρüi + fi , (3)

where fi are the components of external body forces, ρ is the mass density and a dot above a variable denotes time differentiation.
Law of hear conduction:

γ
T = c
(
Ṫ + τ T̈

) + T0β (u̇k,k + τ ük,k) + q, (4)

where γ is the coefficient of thermal conductivity, c is the specific heat of the unit volume in the absence of deformation, τ is a relaxation
time, q is a heat source and 
 is the Laplacian operator. The resultant temperature gradient that leads to heat transfer depends not only on the
heat source but also on the strain rate at each point of the elastic body. A relaxation time τ is introduced to make the heat equation hyperbolic,
leading to wave-like behaviour for the T wave.

By combining eqs (1)–(4), we obtain{
μui, j j + (λ + μ) u j, j i − β T,i = ρüi ,

γ T, j j = c
(
Ṫ + τ T̈

) + T0β
(
u̇ j, j + τ ü j, j

) + q
. (5)

Eq. (5) couples the mechanical and thermal motions. The strain and temperature fields are coupled as a result of the action of elastic and
heat sources. S waves are not affected by the temperature, since the shear strain is not coupled with the heat equation. On the other hand, the
P wave generates temperature gradients leading to mechanical energy dissipation and heat-conduction absorption, while the heat equation
predicts a T wave analogous to the slow P wave of Biot theory of poroelasticity. In fact, the static constitutive equations of poroelasticity
and thermoelasticity are formally the same if we identify the pore-fluid pressure with the temperature and the fluid compression with entropy
(Norris 1991).
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3 D I S P E R S I O N A NA LY S E S W I T H P L A N E WAV E S

A plane-wave analysis of the thermoelasticity equations provides a simple way to understand the physics of wave propagation in thermoelastic
media. Let us consider the following plane-wave expression of the displacement components and temperature fluctuations,{

ui = Adi exp [iω (t − sli xi )] ,

T = B exp [iω ((t − sli xi ))] ,
(6)

where ω is the angular frequency, t is the time, s = 1/Vc is the slowness with Vc being the complex velocity, di is a unit vector denoting
the direction of displacement, xi is the position components, li is the directions defining the propagation direction, A and B are amplitude
constants, and i = √

(−1).

3.1 Dispersion relations

For the S wave, di li = 0 (Deresiewicz 1957), that is, the direction of displacement is perpendicular to the propagation direction. As formulated
in Appendix B, we obtain the following dispersion relation for this wave:⎧⎪⎪⎨
⎪⎪⎩

[
μ

(
ω

Vc

)2
− ρω2

]
A − i ω

Vc
β B = 0,[

iωc − ω2τ + γ
(

ω

Vc

)2
]

B = 0.

(7)

The solution to this equation results in the S-wave velocity,

B = 0, Vc =
√

μ/ρ. (8)

We see that the S-wave propagation is lossless because of the isotropic assumption in the current thermoelasticity theory, where the
shear stresses are independent of temperature, and therefore they are not coupled with the heat-conduction equation. Likewise, for P waves,
di li = 1 (Deresiewicz 1957), that is, the direction of displacement is parallel to the propagation direction. As described in Appendix B, we
obtain the following dispersion relation:[

−ρω2 + (λ + 2μ)

(
ω

Vc

)2
] [

icω + γ

(
ω

Vc

)2

− cτω2

]
= − β2γ T0

ω

Vc

(
iω − τω2

)
. (9)

The solution to this equation results in complex velocities for the P waves,

2V 2
c = V 2

A + M ±
√(

V 2
A + M

)2 − 4V 2
I M . (10)

where M = iωa2/(1 + iωτ ), with a = √
(γ /c), is a complex kernel arising from a Maxwell mechanical model of viscoelasticity (Carcione

2014), VI = √
((λ+2μ)/ρ) and VA = √

(VI
2 + b2), with b = β

√
(T0/(ρc), are the isothermal and adiabatic phase velocities (Rudgers 1990;

Carcione et al. 2018). We see that the P-wave propagation is dissipative because of the coupling of the bulk stresses with the heat-conduction
equation. There are two longitudinal waves, an elastic E wave (a fast P wave) and a T wave (a slow thermal P wave). We have two real
solutions for ω = 0,

Vc = 0 (T wave) , Vc = VA (E wave) . (11)

For c→∞, we have Vc = VI, whereas for γ → 0, we obtain Vc = VA. For γ → ∞ or ω → ∞, Vc becomes the high-frequency limit
E-wave velocity VE∞ and limit T-wave velocity VT∞, respectively. A detailed discussion on the values of τ associated with relaxation peaks
and peak frequencies are given in Carcione et al. (2018).

3.2 Dispersion and attenuation behaviour

The model with the thermoelastic properties, ρ = 2600 kg m−3, λ = 4 GPa, μ = 6 GPa, T0 = 318 K, α = 4.09 × 10−6 K−1 and c = 104 m
s2 K−1. We consider two cases for the thermal conductivity, one with γ = 2.61 m kg s−3 K−1 typical of rocks and the other with a higher
value of γ = 4.5 × 104 m kg s−3 K−1 to illustrate the physics. The phase velocity Vp = [Re(1/Vc)]−1, and the attenuation coefficient Ac =
−4π Im(1/Vc)Vp can be calculated from the complex velocity Vc, as a function of frequency (see Carcione 2014).

Figs 1 and 2 show the phase velocities and attenuation coefficients of the elastic and thermal waves as a function of frequency for the two
values of the thermal conductivity, respectively. The inflexion point of the velocity occurs at a frequency fp = VI

2/(2πa2), nearly at 39 MHz
in the first case and 2.26 KHz in the second case. As can be seen, the E wave low-frequency velocity is the adiabatic one, that is,VA = 3553 m
s−1, whereas VI = 2481 m s−1, the isothermal velocity, is not involved in the coupled case. The high-frequency E wave limit velocity is VE∞
= 4059 m s−1, the high-frequency T wave limit velocity is VT∞ = 1516 m s−1, close to the S-wave velocity.

Because of the thermoelastic due to heat diffusion, the E and T waves are attenuated and undergo dispersion. Note that the attenuation
coefficients of the two waves have a peak (Ac ≈ 1), in both cases at the angular frequency ω ≈ 1/τ , depending on the values of γ (Rudgers
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396 Z.-W. Wang et al.

Figure 1. Phase velocities (a) and attenuation coefficients (b) of the E and T waves as a function of frequency for the thermal conductivity γ = 2.61 m kg
s−3 K−1.

Figure 2. Phase velocities (a) and attenuation coefficients (b) of E and T waves as a function of frequency for the thermal conductivity γ = 4.5 × 104 m kg
s−3 K−1.

Figure 3. Snapshots of the vertical component of the particle velocity (a) and temperature (b) at 3 μs, corresponding to the coupled case with γ = 10.5 m kg
s−3 K−1. The perturbation is a heat source with a central frequency of 3.5 MHz.

1990). We obtain a peak at the ultrasonic band for values of γ typical of rocks. Increasing τ , the peak moves to low frequencies. The timescale
for heat diffusion is a function of the length scale involved in the process of heat flow. The behaviour of the T wave has similar characteristics
to that of the Biot slow diffusive wave. The mathematical analogy identifies temperature field in thermoelasticity with fluid pressure in
poroelasticity (Bonnet 1987; Manolis & Beskos 1989; Norris 1991).

The thermal conductivity γ ranges from 24 000 m kg s−3 K−1 for CRC aluminium to 0.023 m kg s−3 K−1 for air, whereas rocks filled
with fluids have a range between 1 and 12 m kg s−3 K−1. We select two very dissimilar values, namely, γ = 2.6 m kg s−3 K−1 and γ =
4.5 × 104 m kg s−3 K−1, to show how the physics behaves.
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Figure 4. Snapshots of the vertical component of the particle velocity (a) and temperature (b) at 3 μs, corresponding to the coupled case with a high thermal
conductivity of γ = 4.5 × 106 m kg s−3 K−1. The perturbation is a heat source with a central frequency of 3.5 MHz.

4 G R E E N ’ S F U N C T I O N S

Green’s functions represent the fundamental solution to partial differential equations with a point source (the force or heat source). The
Green function of the classical thermoelasticity theory (a parabolic-type equation) has been derived for a homogeneous isotropic medium
(Tosaka & Suh 1991). In this section, we formulate the Green function of the modified thermoelasticity equations with a relaxation term
(Lord & Shulman 1967). The derived process generally consists of three steps (e.g. Pao & Varatharajulu 1976): structuring the fundamental
equation for the solution of partial differential equations to a point source, solving the fundamental equation by variables separation method
and reconstructing the fundamental solution tensor

4.1 Fundamental equation

Applying the Fourier transform defined by

ũ (x, ω) =
∞
∫
0

u (x, t) e−iωt dt, (12)

to eq. (5), we obtain the following differential equations in the frequency domain (omitting the hat for convenience):{
μui, j j + (λ + μ) u j, j i + ρω2ui − β T,i = 0,

γ T, j j − c
(
iω − τω2

)
T − T0β

(
iω − τω2

)
u j, j = 0.

(13)

It is convenient to rewrite the above system in the following matrix form:

Li j U j = 0, (14)

where

Li j =

∣∣∣∣∣∣∣
μ
 + (λ + μ) D2

1 + ρω2 (λ + μ) D1 D2 −β D1

(λ + μ) D1 D2 μ
 + (λ + μ) D2
1 + ρω2 −β D2

−T0β
(
iω − τω2

)
D1 −T0β

(
iω − τω2

)
D2 γ
 − c

(
iω − τω2

)
∣∣∣∣∣∣∣ ,

and

U j = 〈
ũ1 ũ2 T̃

〉
,

with the notation Di = ∂/∂xi (i = 1,2).
The fundamental solution tensor (a weighting tensor as the basic components of Green’s function) Vij

∗ satisfies the differential equation
to a point source,

L∗
i j V

∗
jk = − δ∗

ikδ (x − y) , (15)

where Lij
∗ is the adjoint cofactor operator of Lij.

L∗
i j =

∣∣∣∣∣∣∣
μ
 + (λ + μ) D2

1 + ρω2 (λ + μ) D1 D2 −T0β
(
iω − τω2

)
D1

(λ + μ) D1 D2 μ
 + (λ + μ) D2
1 + ρω2 −T0β

(
iω − τω2

)
D2

−β D1 −β D2 γ
 − c
(
iω − τω2

)
∣∣∣∣∣∣∣
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Figure 5. Snapshots of the horizontal particle velocity (left panel), vertical particle velocity (middle panel) and temperature (right panel) at 2.6 μs, calculated
for a thermal conductivity of γ = 2.61 m kg s−3 K−1, with a horizontal elastic force (a), a vertical elastic force (b) and a heat source (c), corresponding to a
Ricker-wavelet frequency of f0 = 1.5 MHz.

4.2 Fundamental solutions

In order to derive the solution to eq. (15), we follow Kupradze et al. (1976) and Tosaka & Suh (1991) and make use of the fundamental
solution tensor V ∗

i j in terms of the scalar potential function �∗ and the transposed co-factor operator Lij
T of Lij

∗.

V ∗
i j (x, y, s) = LT

i j �∗ (x, y, s) . (16)

Substitution of eq. (16) into eq. (15) yields

� �∗ = − δ (x − y) , (17)
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On the Green function of the Lord–Shulman thermoelasticity equations 399

Figure 6. Snapshots of the horizontal particle velocity (left panel), vertical particle velocity (middle panel) and temperature (right panel) at 2.6 μs, calculated
with the thermal conductivity γ = 4.5 × 104 m kg s−3 K−1, for a horizontal elastic force (a), a vertical elastic force (b) and a heat source (c) corresponding to
a Ricker-wavelet frequency of f0 = 1.5 MHz.

where

� = det
(
L∗

i j

) = μ

λ + 2μ

(

 − h2

1

) (

 − h2

2

) (

 − h2

3

)
, (18)

and the coefficient of hi
2 can be determined as these which satisfy⎧⎪⎪⎨

⎪⎪⎩
h2

1 + h2
2 = ρω2

λ+2μ
− iω(1+iωτ )

κ

(
1 + β2T0

c(λ+2μ)

)
,

h2
1h2

2 = − ρω2

λ+2μ
· iω(1+iωτ )

κ
,

h2
3 = ρω2

μ
.

(19)
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Note that h1 and h2 are functions of the relaxation time τ , while, h3 and τ are not related.
Using eq. (18), the fundamental solution for �∗ from eq. (17) can be formulated as

�∗ = λ + 2μ

2πμ

3∑
i = 1

Wi K0 (ihir ) , (20)

where

Wi = −1(
h2

i − h2
j

) (
h2

k − h2
i

) (i = 1, 2, 3 j = 2, 3, 1 k = 3, 1, 2) . (21)

Each component of the fundamental solution tensor Vij
∗ can be obtained by employing the derived fundamental solution as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
V ∗

i j = 1
2πμ

Wk
∑3

k=1

(
ψk (r ) δi j − χk (r ) r,i r, j

)
, (i, j = 1, 2) ,

V ∗
3i = β

2π (λ+2μ)

∑3
k=1 Wkξk (r ) r,i , (i = 1, 2) ,

V ∗
i3 = iωη

2π (λ+2μ)

∑3
k=1 Wkξk (r ) r,i , (i = 1, 2) ,

V ∗
33 = 1

2π

∑3
k=1 Wkζk (r ) ,

(22)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψk (r ) =
[(

h2
k + m

) (
h2

k − m1

) + ηβκmh2
k

λ+2μ

]
K0 (ihkr ) − Pk

hk
r K1 (ihkr ) ,

χk (r ) = Pk h2
k K2 (ihkr ) ,

ξk (r ) = − (
h2

k − m2

)
ihk K1 (ihkr ) ,

ζk (r ) = (
h2

k − m1

) (
h2

k − m2

)
K0 (ihkr ) ,

(23)

with

Pk = λ + μ

λ + 2μ

(
h2

k + m
)
, (24)

and

m = iω (1 + iωτ )

κ
, m1 = ρω2

λ + 2μ
, m2 = ρω2

μ
, κ = γ

c
, η = βT0

γ
. (25)

Here, K0, K1 and K2 are the modified Bessel function of the second kind of order zero, first and second, respectively, with the argument
r = ‖ x − y ‖.

To understand the physical meaning of the basic components of the Green function (i.e. fundamental solution tensor), it is convenient to
write the fundamental solution in matrix form as

V ∗
i j =

∣∣∣∣∣∣∣
V ∗

11 V ∗
12 V ∗

13

V ∗
21 V ∗

22 V ∗
23

V ∗
31 V ∗

32 V ∗
33

∣∣∣∣∣∣∣ . (26)

This Green function is a second-order tensor with nine components, where (V11
∗, V21

∗, V31
∗), (V12

∗, V22
∗, V32

∗) and (V13
∗, V23

∗, V33
∗)

correspond to the horizontal particle velocity, vertical particle velocity and temperature, respectively, of a horizontal elastic force, a vertical
elastic force, and a heat source, respectively.

4.3 Numerical experiments

We use the analytical method, based on the proposed second-order tensor Green’s function (eq. 22), to calculate wavefield snapshots, where
the model parameters are consistent with those used in Carcione et al. (2018). The source is a vertical force and has the time function h(t) =
cos[(t − t0) f0] exp[−2(t − t0)2f0

2], where the central frequency is f0 = 3.5 MHz and t0 = 3/(2f0) is a delay time.
Fig. 3 shows the vertical particle velocity (a) and temperature field (b) for a heat source, with γ = 10.5 m kg s−3 K−1. As expected, there

is no S wave. The velocity of the E wave is slightly less than VE∞, whereas the T wave is diffusive. As predicted by Fig. 1(b), the T wave is
highly attenuated and can hardly be seen.

Fig. 4 shows the vertical particle velocity (a) and temperature field (b) for a heat source, corresponding to γ = 4.5 × 106 m kg s−3 K−1.
The E and T wave fronts travel with the velocities VE∞ and VT∞, respectively. The difference with Fig. 3 is the weak attenuation of the T
wave, in agreement with Fig. 2(b).

To compare snapshots generated by the elastic and heat sources, we consider a 231 × 231 mesh with square cells and a grid spacing of
dx = dz = 100 μm. The source is a Ricker wavelet located at the centre of the mesh with f0 = 1.5 MHz. The model thermoelastic properties
are same as those in Section 3.2. Fig. 5 shows snapshots of the horizontal particle velocity (left panel), vertical particle velocity (middle panel)
and temperature (right panel) are calculated at 2.6 μs according to eq. (26), with γ = 2.61 m kg s−3 K−1, for a horizontal elastic force (a), a
vertical elastic force (b) and a heat source (c). The E (i.e. fast P wave) and S waves have their motions consistent with the radiation pattern
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On the Green function of the Lord–Shulman thermoelasticity equations 401

for point forces (Aki & Richards 2002). The velocity of the E wave is slightly less than VE∞. The T wave is highly attenuated according to
Fig. 1(b).

Fig. 6 shows snapshots of the particle velocity and temperature tensor for γ = 4.5 × 104 m kg s−3 K−1 along the x- and z-directions for
a Ricker-wavelet frequency of f0 = 1.5 MHz. The snapshots of the horizontal particle velocity (left panel), vertical particle velocity (middle
panel) and temperature (right panel) are calculated at 2.6 μs, according to eq. (26), for a horizontal elastic force (a), a vertical elastic force
(b) and a heat source (c). The E and S waves have their motions consistent with the radiation pattern for point forces (Aki & Richards 2002).
The E and T wave fronts travel with the velocities VE∞ and VT∞. We can see the T wave, since the attenuation is negligible, in agreement with
Fig. 2(b).

5 C O N C LU S I O N S

We have considered the modified thermoelasticity equations that incorporate a relaxation term to overcome the unphysical behaviour described
by the classical theory. We formulate a second-order tensor Green’s function for wave propagation in a homogeneous isotropic medium. It is
the displacement–temperature solution to a point (elastic or heat) source. The Green function is generally used as the fundamental solution for
the integral equation representation of thermoelasticity problems and a test of numerical algorithms. The theory predicts three distinct waves:
an E wave (a fast P wave), a T wave (a thermal P wave) and an S wave (a shear wave). The P waves suffer attenuation and velocity dispersion
because of the compression/expansion-induced temperature gradients leading to mechanical energy dissipation and heat conduction, whereas
the S wave is unaffected by the thermal effects.

We compare the heat-source-induced wavefield snapshots of the vertical particle velocity and temperature by assuming a very high
thermal conductivity with a smaller one typical of rocks. In the latter case, the T wave has a diffusive character, whereas it is wave-like for a
much higher conductivity. For a heat source, there are no S waves. We also compare snapshots of the horizontal/vertical particle velocities and
temperature generated by horizontal/vertical elastic forces and heat source. These numerical experiments show that the elastic and thermal
P modes are dispersive and lossy, as predicted by the plane-wave analyses. These modes have similar characteristics of the fast and slow P
waves of the poroelasticity theory. In particular, the thermal mode is diffusive at low thermal conductivities and becomes wave-like for high
thermal conductivities. In poroelasticity, this corresponds to high and low fluid viscosities.

A detailed account of the boundary integral equation formulation and implementation by boundary-element numerical methods using
the Green function presented here will be the subject of a future paper.
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A P P E N D I X A : L I S T O F S Y M B O L S

ui Components of the displacement (i = 1, 2, 3)
εij Strain components (i, j = 1, 2, 3)
σ ij Stress components (i, j = 1, 2, 3)
λ, μ Lamé constants
δij Kronecker-delta component
fij External stress forces (i, j = 1, 2, 3)
T0 Absolute temperature for the state of zero stress and strain
T Increment of temperature above a reference absolute temperature T0

α Coefficient of thermal expansion
β Stress–temperature modulus
fi Components of the external body forces (i = 1, 2, 3)
ρ Mass density
γ Coefficient of heat conduction (or thermal conductivity)
c Specific heat of the unit volume in the absence of deformation
τ Relaxation time
q Heat source

 Laplacian operator
ω Angular frequency
Vc Complex velocity
s Slowness
di Directions of the displacement vector (i = 1, 2, 3)
xi Position components (i = 1, 2, 3)
li The propagation direction (i = 1, 2, 3)
A, B Amplitude constants
a Thermal diffusivity
VI Isothermal phase velocities
VA Adiabatic phase velocities

Note: Subscript ‘i’ denotes a spatial derivative.
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A P P E N D I X B : V E L O C I T Y O F T H E S A N D P WAV E S I N A H O M O G E N E O U S
T H E R M O E L A S T I C M E D I U M

To derive the P and S wave velocities, we use eq. (6) to obtain the following functions related to displacement and temperature,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ui, j j = −
(

ω

Vc

)2
Adi , u j, j i = −

(
ω

Vc

)2
Ad j l j li , üi = − ω2 Adi ,

T, j j = −
(

ω

Vc

)2
B, ü j, j = i ω

Vc
ω2 Ad j l j , u̇ j, j = ω

Vc
ωAd j l j ,

T,i = − i ω

Vc
Bli , Ṫ = iωB, T̈ = − ω2 B,

(B1)

where the exponential term is omitted for the sake of brevity. Substituting eq. (B1) into eq. (5), we obtain a system of algebraic equations⎧⎪⎨
⎪⎩

μ
(

ω

Vc

)2
Adi − ρω2 Adi + (λ + μ)

(
ω

Vc

)2
Ad j l j li − iγ Bβ li = 0,

c
(
iωB − τω2 B

) + T0β
(

ω

Vc
ωAd j l j + iτ ω

Vc
ω2 Ad j l j

)
+ γ

(
ω

Vc

)2
B = 0.

(B2)

For the S wave, di li = 0 and eq. (B2) reduces to⎧⎪⎪⎨
⎪⎪⎩

[
μ

(
ω

Vc

)2
− ρω2

]
A − i ω

Vc
β B = 0,[

iωc − ω2τ + γ
(

ω

Vc

)2
]

B = 0.

(B3)

The solution to this equation for the S-wave velocity is

B = 0, Vc =
√

μ/ρ . (B4)

For the P wave, di li = 1 and eq. (B2) reduces to⎧⎪⎪⎨
⎪⎪⎩

[
−ρω2 + (λ + 2μ)

(
ω

Vc

)2
]

A = iβ ω

Vc
B,

iβT0
ω

Vc

(
iω − τω2

)
A =

(
icω + γ

(
ω

Vc

)2
− cτω2

)
B.

(B5)

Eliminating the constants A and B leads to the secular equation[
−ρω2 + (λ + 2μ)

(
ω

Vc

)2
] [

icω + γ

(
ω

Vc

)2

− cτω2

]
= − β2γ T0

ω

Vc

(
iω − τω2

)
. (B6)

By introducing the variables a = √
(γ /c), b = β

√
(T0/(ρc) and VI = √

((λ+2μ)/ρ), VA = √
(VI

2 + b2), we have

(−V 2
c + V 2

A

)
iω (1 + iτω) + [−V 2

c + V 2
I

]
a2

(
ω

Vc

)2

= 0. (B7)

Defining M = (iωa2)/(1 + iτω), eq. (B7) can be further written as

V 4
c − (

V 2
A + M

)
V 2

c + V 2
I M = 0. (B8)

The solution to this equation for the P-wave velocity is

2V 2
c = V 2

A + M ±
√(

V 2
A + M

)2 − 4V 2
I M . (B9)
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