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Abstract
We study the anelastic properties (attenuation and velocity dispersion) of surface waves 
at an interface between a finite water layer and a porous medium described by Biot theory 
including the frequency-dependent effects due to mesoscopic flow. A closed-form disper-
sion equation is derived, based on potential functions and open and sealed boundary con-
ditions (BC) at the interface. The analysis indicates the existence of high-order surface 
modes for both BCs and a slow true surface mode only for sealed BC. The formulation 
reduces to two particular cases in the absence of water and with infinite-thickness water 
layer, with the presence of pseudo-versions of Rayleigh and Stoneley waves. The meso-
scopic flow affects the propagation of all the pseudo-surface waves, causing significant 
velocity dispersion and attenuation, whereas the effect of the BC is mainly evident at high 
frequencies, due to the presence of the slow Biot wave. The mesoscopic-flow peak moves 
to low frequencies as the thickness of the water layer increases. In all cases, the true sur-
face wave resembles the slow P2 wave, and is hardly affected by the flow.

Keywords Surface waves · Velocity dispersion · Attenuation · Mesoscopic flow · Biot 
theory · Boundary conditions

Article Highlights

• We study the velocity dispersion and attenuation of surface waves at an interface 
between a water layer and a porous medium described by an effective Biot theory, 
where the mesoscopic flow plays an important role

• We also consider the cases where the thickness of the water layer is zero and infinity
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• The examples reveal the nature of the surface waves and how the mesoscopic flow 
affects their propagation

1 Introduction

The propagation of surface waves is of interest in many fields, including geotechnical engi-
neering, seismology, borehole logging and exploration geophysics (Markov 2009; Norris 
1989; Pan et al. 2019; Tang and Cheng 1996; Xia et al. 2012). A detailed investigation in 
porous media has potential in revealing medium properties, such as permeability, porosity 
and saturation, which are important for reservoir characterization and fluid detection. For 
instance, Stoneley waves have been successfully used to estimate the formation permeabil-
ity (Tang and Cheng 1996; Zhang and Müller 2019).

A phenomenological description of wave propagation in porous media was initiated by 
Biot (1956, 1962). He considered the media as a frame (matrix or skeleton), fully saturated 
with a single fluid, and established the constitutive (stress–strain) relations. In addition to 
the classical fast compressional and shear waves, the theory predicts a new slow compres-
sional mode, which is diffusive at low frequencies and wave-like at high frequencies. The 
superposition of all these waves at an interface generates surface modes, whose features 
are different from those of the non-porous case. Basically, the surface modes become dis-
sipative and dispersive due to losses by mode conversion to the slow wave (Deresiewicz 
1962; Zhang et  al. 2011). Considering a free surface of a porous medium, Deresiewicz 
(1962) confirmed the existence of a Rayleigh wave and analyzed its anelastic character-
istics. Tajuddin (1984) examined the effects of permeable and impermeable boundaries 
on the Rayleigh waves. Partially permeable boundaries were investigated by Zhang et al. 
(2011), predicting a second surface wave, which closely resembles the bulk slow P2 wave, 
but appearing only at impermeable and partially permeable interfaces.

Surface waves at a liquid-porous medium interface were also studied (Chao et al. 2006; 
Feng and Johnson 1983a; Gubaidullin et al. 2004). Deresiewicz (1964) considered Stone-
ley waves in a Biot half-space with open-pore boundary conditions (BC), where he derived 
asymptotic expressions at low frequencies. Feng and Johnson (1983a) predicted a true sur-
face wave and pseudo-Rayleigh and Stoneley waves (e.g., Carcione 2022). The true surface 
waves travel slower than all the body waves, and mainly appear under sealed-pore bounda-
ries. The pseudo-Stoneley wave travels with a velocity between the bulk fluid sound speed 
and those of the slow modes, whereas the pseudo-Rayleigh wave propagates slower than 
the P1 (fast) and SV waves. These two waves leak part of their energies into slower mode 
as they propagate along the interface, and therefore are called pseudo-surface waves. If the 
liquid density tends to zero, the pseudo-Rayleigh wave becomes the classical Rayleigh one. 
Most predictions were validated experimentally by sonic measurements (Adler and Nagy 
1994; Mayes et  al. 1986), numerically by algorithms based on a domain-decomposition 
approach (Sidler et al. 2010) and analytically by a Green function using the Cagniard-de 
Hoop technique (Feng and Johnson 1983b). Gubaidullin et al. (2004) considered the vis-
cous interaction between the fluid and solid and investigated numerically the frequency 
dependence of the velocities and damping coefficients of the three surface modes. Using 
an inverse Fourier transform, Han et  al. (2017) obtained time-domain waveforms of the 
surface waves at a fluid-porous medium interface. Other studies regard propagation at an 
interface between two fluid-saturated porous media (Markov 2009) and between a liquid 
and layered porous media (Qiu et al. 2019).
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However, Biot theory considers a macroscopic flow and cannot describe the broadband 
dispersion and attenuation of in situ rocks. Realistic attenuation is induced by fluid flow 
at various scales, including the microscopic and mesoscopic ones (Carcione et  al. 2010; 
Carcione 2022; Müller et  al. 2010). The squirt-flow model considers the microscopic 
scale (Carcione and Gurevich 2011; Dvorkin and Nur 1993; Dvorkin et al. 1995). It typi-
cally occurs at ultrasonic frequencies with fluid flowing from compliant regions (cracks, 
grain contacts) to the stiffer ones (pores). Using this model, Sharma (2018) investigated 
the properties of Rayleigh waves, predicting an additional (second) Rayleigh wave, which 
travels faster. On the other hand, the mesoscopic-flow mechanism accounts for attenua-
tion at seismic frequencies (e.g., Carcione et al. 2010; Carcione 2022; Masson and Pride 
2007; Müller et al. 2010; Pride et al. 2004; Zhao et al. 2015; Zhang et al. 2021). It occurs 
due to the heterogeneities much larger than the pore size but smaller than the wavelength. 
This mechanism appears in double-porosity theories. Pride and Berryman (2003a, 2003b) 
considered a composite of two isotropic porous materials (or phases) and developed 
a double-porosity model by applying a volume averaging based on Biot theory. A com-
plex frequency-dependent compressibility law is introduced to describe the fluid transfer 
between the porous constituents. The double-porosity model reduces to an effective Biot 
theory involving complex and frequency-dependent moduli (Pride et al. 2004). It provides 
the basis for developing an upscaled poroviscoelastic formulation for seismic wave mod-
eling in real media (Liu et al. 2009, 2018). The model has been applied by Liu et al. (2016) 
to analyze the velocity dispersion of borehole guided waves. On the other hand, Ba et al. 
(2011) developed a double-porosity model based on the Biot theory of poroelasticity and 
the Rayleigh model of bubble oscillations. The mesoscopic flow is described by a generali-
zation of Rayleigh theory of liquid collapse of a spherical cavity. This model was applied 
by Sharma (2014) to study the propagation of Rayleigh waves. In addition, patchy-satura-
tion models have also been developed to explain the wave loss (Chao et al. 2006; Lo et al. 
2005; Lo 2008; Masson and Pride 2011; Sharma 2012; Wang et al. 2022; Zhao et al. 2017, 
2021; Zhang et al. 2014, 2022).

Fluid flow affects the propagation of body waves and hence the surface waves (Dahl and 
Spikes 2017; Sharma 2014). The effect of macroscopic flow on the propagations of surface 
modes, including the Rayleigh and Stoneley waves, has been extensively studied by using 
the Biot theory (e.g., Deresiewicz 1962, 1964; Feng and Johnson 1983a; Gubaidullin et al. 
2004; Markov 2009; Tajuddin 1984; Zhang et  al. 2011). Basically, mode conversion into 
slow waves causes the Rayleigh and Stoneley waves to be pseudo-modes. Moreover, the 
frequency-dependent propagation can be significantly affected by the BC (Feng and Johnson 
1983a; Tajuddin 1984; Zhang et  al. 2011). Specifically, sealed or partially permeable BCs 
can induce an additional slow true surface mode, which closely resembles the slow P2 wave 
(Zhang et al. 2011), a mode that has been experimentally observed by Adler and Nagy (1994). 
Because only the macroscopic flow is considered, those results are mostly applicable at high 
frequencies. To study the broadband surface-wave propagation, the microscopic- and meso-
scopic-flow mechanisms have been considered. The related theories include the squirt-flow 
model (Dahl and Spikes 2017; Sharma 2018), the patchy-saturation model (Chao et al. 2006; 
Lo 2008; Sharma 2012; Zhang et al. 2014), and the double-porosity model (Dai et al. 2006; 
Sharma 2014). In particular, Dahl and Spikes (2017) analyzed the effects of squirt flow on 
borehole acoustic wave modes based on the Chapman model, where the Stoneley wave can be 
significantly affected. Chao et al. (2006) investigated the properties of pseudo-Rayleigh and 
pseudo-Stoneley waves that propagate between a fluid and a partially saturated medium. The 
theory is based on a modified Biot model that takes into account the interaction among the gas 
bubbles, liquid and solid phases of the medium. Rayleigh-wave propagation at the surface of a 
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partially saturated medium was investigated by Sharma (2012). The results imply the signifi-
cant dependence of the surface-wave dispersion and attenuation on saturation. Moreover, sur-
face-wave dispersion in the presence of double-porosity heterogeneities has been considered, 
where the studies mainly focus on Rayleigh waves. Specifically, using the model of Ba et al. 
(2011), Sharma (2014) studied the Rayleigh wave propagation. The presence of mesoscopic 
flow enhances the dispersive behavior of these waves. The same problem was analyzed by Dai 
et al. (2006) using the theory of Pride and Berryman (2003a, 2003b), without the mesoscopic-
flow effect. The effects of double-porosity mesoscopic flow on the propagation of various sur-
face waves, particularly Stoneley modes, have not been fully analyzed. Such an analysis is of 
interest in exploration geophysics and borehole logging.

The aim of the present work is to explore the effect of double-porosity mesoscopic flow on 
the broadband propagation of various surface modes, including the pseudo-waves. We obtain 
the solutions for a flat interface separating a water layer and an effective Biot half-space, 
depending on the liquid thickness and medium properties. We choose the effective Biot model 
rather than the double-porosity theory for two reasons. First, it describes the mesoscopic-flow 
attenuation simply by using complex and frequency-dependent coefficients (Pride et al. 2004). 
Second, the equations have the same form as the classical Biot theory and hence the results are 
comparable to the results of Feng and Johnson (1983a), Gubaidullin et al. (2004) and Zhang 
et al. (2011). The paper proceeds as follows. We first briefly review the effective Biot theory 
and present its plane-wave solution. Then, we derive closed-form dispersion equations for the 
surface-wave propagation, based on potentials and suitable BC. Next, examples are presented 
to analyze the dispersion and attenuation of the related surface waves, including the pseudo-
Rayleigh and Stoneley modes.

2  Effective Biot Theory

In the double-porosity model (Pride et al. 2004), the heterogeneous rock is described as a com-
posite of two porous phases, namely the host phase (1) and the inclusion phase (2), having dif-
ferent hydraulic and elastic properties, but saturated by a single fluid. When phase 2 is totally 
embedded in the host phase, the double-porosity theory reduces to an effective single-porosity 
Biot model. The effect of mesoscopic flow is described by the complex stiffness moduli.

Defining the displacement vectors of the matrix and fluid relative to the solid as u and 
w , respectively, and using a time dependence of exp(−i�t) , where � is the angular fre-
quency, the generalized compressibility laws (constitutive equations) are

where v = −i�u is the average particle velocity of the solid, q = −i�w is the macroscopic 
fluid flux, I is the second-order identity matrix, �(�) is the complex and frequency-depend-
ent shear modulus, �D is the average deviatoric stress tensor, pc is the total average confin-
ing pressure acting on the averaging volume of the composite, and pf is the average fluid 
pressure. The coefficients a∗

ij
 are given in Appendix A.

Introducing the total stress �ij = �D
ij
− pc�ij , where �ij is the Kronecker delta, and the 

relation

(1)
[
∇ ⋅ v

∇ ⋅ q

]
=i�

[
a∗
11

a∗
12

a∗
12

a∗
22

][
pc
pf

]
,

(2)−i��D =�(�)[∇v + (∇v)T −
2

3
∇ ⋅ vI],
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and using Eqs. (1) and (2), we have

with �c = Ksat −
2

3
� , and the comma preceding an index indicates spatial differentiation. 

Equation (4) is the same as the classical Biot theory (1962), except for that the quantities 
Ksat , � and M are frequency-dependent, which can be expressed in terms of the effective 
drained bulk modulus KD(�) and effective Skempton coefficient B(�) as

where

which are the same as those of Pride et al. (2004). In the presence of fluid pressure differ-
ences between the two phases, fluid pressure equilibration results into frequency-dependent 
KD and B.

The conservation of momentum is

where � = ��f + (1 − �)�s is the density of the composite, with � being the total porosity 
(see Appendix A), and �f and �s the densities of the fluid and solid grain, respectively.

The effective Darcy law, allowing for fluid coupling the two phases, is

where �(�) is the effective dynamic permeability of the composite, which can be obtained 
by taking the harmonic mean of the constituents as (Pride et al. 2004)

where �i(�) is the dynamic permeability of porous phase i, given by (Johnson et al. 1987),

where �i is the tortuosity of phase i.
Note that equation (8) considers no fluid–solid inertial coupling, and consequently 

differs from the classical Biot theory. To take the inertial coupling into account, we gen-
eralize this equation as

(3)
[
Ksat �M

�M M

]
=

[
a∗
11

a∗
12

a∗
12

a∗
22

]−1
=

1

a∗
11
a∗
22
− (a∗

12
)2

[
a∗
22

− a∗
12

−a∗
12

a∗
11

]
,

(4)
�ij =(�cui,i + �Mwi,i)�ij + �(ui,j + uj,i),

pf = − �Mui,i −Mwi,i,

(5)
1

Ksat
=

1

KD(�)
+ B(�)a∗

12
(�), � =

1 − KD(�)∕K
sat

B(�)
, M = KsatB(�)

�
,

(6)
1

KD(�)
= a∗

11
(�), B(�) = −

a∗
12
(�)

a∗
22
(�)

,

(7)∇ ⋅ �
D − ∇pc = −i�(�v + �fq),

(8)q = −
�(�)

�
(∇pf − i��fv),

(9)
1

�(�)
=

v1

�1(�)
+

v2

�2(�)
,

(10)
�i(�) =

�i[
1 −

i

2
�i�i�f�∕(��i)

]1∕2
− i�i�i�f�∕(��i)

, i = 1, 2,
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where m = ��f∕� , with an effective tortuosity � = 0.5 + 0.5∕� is considered for spherical 
grains (Berryman and Wang 2000).

3  Plane‑wave Solution

In the uniform (homogeneous) case, the averaged displacement vectors of the matrix u and 
fluid U(= w∕� + u) , the fluid stress � = −�pf and solid stress components �ij = �ij − ��ij can 
be used, and equation (4) becomes

where

The equations of momentum conservation become

where

Based on equations (12) and (14), we obtain the effective Biot equations in terms of u and 
U as

which have the same form as the classical Biot theory (Biot 1962) with A, N, Q and R 
frequency-dependent.

A plane-wave analysis of Eq. (16) predicts three wave modes, namely, the fast P1 wave, the 
slow P2 wave and the shear wave. Following Feng and Johnson (1983a), the complex veloci-
ties of the two P waves are

where P = A + 2N,

(11)q = −
�(�)

�
(∇pf − i��fv − i�mq),

(12)
�ij =

(
Aui,i + QUi,i

)
�ij + N(ui,j + uj,i),

� =Qui,i + RUi,i,

(13)R = M�2, Q = �M� −M�2, N = �, A = �c − 2Q − R.

(14)
𝜏ij,j =𝜌11üi + 𝜌12Üi + b(u̇i − U̇i),

𝜎,i =𝜌12üi + 𝜌22Üi − b(u̇i − U̇i),

(15)
�12 =��f − m�2, �22 = m�2, b = �2�∕�,

�11 =� − 2�f� + m�2.

(16)
N∇2u + (A + N)∇(∇ ⋅ u) + Q∇(∇ ⋅ U) =𝜌11ü + 𝜌12Ü + b(u̇ − U̇),

Q∇(∇ ⋅ u) + R∇(∇ ⋅ U) =𝜌12ü + 𝜌22Ü − b(u̇ − U̇),

(17)V2
±
=
𝛥 ±

√
𝛥2 − 4(�̃�11�̃�22 − �̃�2

12
)(PR − Q2)

2(�̃�11�̃�22 − �̃�2
12
)

,U± = −G±u±,
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where V+ and V− denote the velocities of the fast P1 and slow P2 waves, and −G+ and −G− 
denote the corresponding amplitude ratios between the average displacements of the fluid 
U and that of the solid u , respectively.

The velocity of the shear wave is (Feng and Johnson 1983a)

where 𝜏 = 𝜏 + ib∕(𝜔𝜙𝜌f) , and 𝜏 − 1

𝜏
 represents the amplitude ratio.

Using the complex velocities, the corresponding phase velocity and dissipation factor 
are (Carcione 2022)

where, “Re” and “Im” represent real and imaginary parts and indexes ‘ + ’, ‘−’ and ‘ sh ’ cor-
respond to the fast P1, slow P2 and SV waves, respectively, which will be denoted as 1, 2 
and 3 in the following. The negative sign in equation (20) for the definition of dissipation 
factor is due to the fact that we use the Fourier convention exp(−i�t).

4  Surface‑Wave Propagation

We consider a water layer of thickness H (denoted as medium I) overlying an effective Biot 
half-space (denoted as medium II), as shown in Fig. 1. The z-axis is perpendicular to the 
interface in the direction of increasing depth into the effective Biot medium. The interface 
is located at z = 0 , and hence −H < z < 0 defines the water layer, whereas z > 0 represents 
the porous half-space.

The equation of motion of the fluid is

(18)

�̃�
11

= 𝜌
11
+ ib∕𝜔, �̃�

12
= 𝜌

12
− ib∕𝜔, �̃�

22
= 𝜌

22
+ ib∕𝜔,

𝛥 ≡P�̃�
22
+ R�̃�

11
− 2Q�̃�

12
,G± =

V2

±
�̃�
11
− P

V2

±
�̃�
12
− Q

,

(19)V2
sh
=

N

(1 − 𝜙)𝜌s + (1 − 1∕𝜏)𝜙𝜌f
, Ush =

𝜏 − 1

𝜏
ush,

(20)Vpi =

[
Re

(
1

Vi

)]−1
, Q−1

i
= −

Im(V2
i
)

Re(V2
i
)
, i = +,−, sh,

Fig. 1  Geometrical model
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where �0 is the potential, v0 = (�0∕�0)
1∕2 is the velocity, with �0 and �0 being the bulk 

modulus and density, respectively.
The general solution of Eq. (21) for surface-wave propagation is

where D0 and E0 are the amplitudes, k is the horizontal wavenumber and 
�0 = (1 − c2∕v2

0
)1∕2 , with c = �∕k being the surface-wave velocity.

The displacements and stresses corresponding to Eq. (21) are

On the other hand, the displacements of the solid and fluid of the effective Biot medium are

where �j(j = 1, 2, 3) are the potentials associated to the fast P1, slow P2 and SV waves, and 
�1 = −G+ , �2 = −G− , and 𝜈3 =

𝜏 − 1

𝜏
 are the amplitude ratios. For harmonic propagation, 

the potentials are

where Dj are the amplitudes, V1 = V+ , V2 = V− and V3 = Vsh are the complex velocities of 
the fast P1, slow P2 and SV waves. Using Eqs. (24) and (25), the total stress �ij and pore-
fluid pressure p

f
 can be obtained using Eq. (4).

4.1  Boundary Conditions

At the free surface of the liquid z = −H , we have

Then, we obtain

and hence equation (22) is simplified as

At the interface ( z = 0 ), the following BC are given (Deresiewicz and Skalak 1963)

(21)
�2�0

�x2
+

�2�0

�z2
=

1

v2
0

�2�0

�t2
,

(22)�0 =
[
D0exp(kz�0) + E0exp(−kz�0)

]
exp[i(kx − �t)],

(23)u0 = (ux, uz)
T = ∇�0, �xz = 0, −pf = �0

(
�2�0

�x2
+

�2�0

�z2

)
.

(24)
ux =

��1

�x
+

��2

�x
−

��3

�z
, uz =

��1

�z
+

��2

�z
+

��3

�x
,

Ux =�1
��1

�x
+ �2

��2

�x
− �3

��3

�z
, Uz = �1

��1

�z
+ �2

��2

�z
+ �3

��3

�x
,

(25)�j = Djexp[i(kx − �t) − kz�j], �j =
√

1 − c2∕V2
j
, j = 1, 2, 3,

(26)(pf)I = 0.

(27)E0 = −D0exp(−2kH�0),

(28)�0 = D0exp(−kH�0)
{
exp[k�0(z + H)] − exp[−k�0(z + H)]

}
exp[i(kx − �t)].
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where the first two equations represent the continuity of the normal and shear stresses, the 
third one is the continuity of the vertical displacement, and ZI is the so-called interface 
impedance (e.g., Carcione et al. 2021; Carcione 2022). In particular, ZI = 0 and ZI = ∞ are 
two special cases representing fully open and sealed BC, respectively (Qi et al. 2021). The 
former indicates a perfect hydraulic connection between the fluid and the porous medium, 
with free flow in the pores. This can occur, for instance, when free gas or water migrates 
from shallow sediments through open fractures into seawater. As a contrast, the latter 
implies the nonalignment of the pore space with the overlying liquid, which can be accom-
plished by an impermeable membrane at the interface. Basically, the BC are the require-
ments to ensure uniqueness of solution at the interface within the framework of the Biot 
theory (Deresiewicz and Skalak 1963), which are also adopted in previous works (e.g., 
Chao et al. 2006; Deresiewicz 1964; Feng and Johnson 1983a; Sharma 2018).

The above BC form a system of equations of order four for the unknown amplitudes 
D = [D0,D1,D2,D3]

T as follows:

where the elements of M are given in Appendix B.

4.2  Special Cases

When H = 0 , the problem given in Fig. 1 reduces to the propagation of Rayleigh waves 
at the free surface of an effective Biot half-space. The corresponding BC in equation (29) 
reduce to

which forms a matrix equation of order three for the unknown amplitudes 
D(1) = [D1,D2,D3]

T as

where the elements of M(1) can be obtained by eliminating the first column and the third 
row of matrix M as

Alternatively, if H = +∞ , the problem becomes the same as that of Feng and Johnson 
(1983a), corresponding to the propagation of Stoneley (Scholte) waves at the interface 

(29)

(𝜎xz)II = 0,

(−p
f
)
I
= (𝜎zz)II,

(uz)I = (uz)II + (wz)II,

(p
f
)
I
− (p

f
)
II
= ZI(ẇz)II,

(30)MD = 0,

(31)

(𝜎xz)II =0,

(𝜎zz)II =0,

−(p
f
)
II
=ZI(ẇz)II,

(32)M(1)D(1) = 0,

(33)M(1) =

⎡⎢⎢⎣

M01 M02 M03

M11 M12 M13

M31 M32 M33

⎤⎥⎥⎦
.
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between a liquid half-space and an effective Biot half-space. In this case, E0 = 0 , and the 
potential �0 becomes

At the interface, the BC in Eq. (29) remain the same, and the matrix equation becomes

where the elements of M(2) can be obtained from M by letting H = +∞ . Hence, the ele-
ments of the first column become

whereas all the other elements of M(2) are the same as those of M.
In Appendix B, we show that the matrix equation (35) is identical to the one of Feng 

and Johnson (1983a), except that the elastic parameters used in (35) are frequency-
dependent in the presence of mesoscopic-flow attenuation. Our equations better describe 
surface-wave propagation at lower frequencies, particularly at the exploration-geophys-
ics band.

4.3  Dispersion Equation

A nontrivial solution of equation (30) requires that the determinant of matrix M must van-
ish, that is, det(M) = 0 , which is the surface-wave dispersion equation. Because transcen-
dental functions are involved, solving for the unknown complex velocity c is highly nonlin-
ear. Here, we use the Muller iteration method (Muller 1956), to numerically obtain the 
solutions. The complex solutions imply that the surface waves are inhomogeneous, i.e., the 
propagation and attenuation directions do not coincide. Moreover, the waves should decay 
with increasing z in the porous half-space, indicating that any solution of c requires a posi-
tive real part for k�j =

�

c
�j given in equation (25). The phase velocity and dissipation factor 

are

respectively.
Similarly,

are the dispersion relations corresponding to H = 0 and H = +∞ , respectively.
It has been shown that there are more than one surface mode (Feng and Johnson 1983a; 

Gubaidullin et al. 2004; Zhang et al. 2011). Using the classical Biot theory, Feng and John-
son (1983a) confirmed the existence of a “true” surface wave and pseudo-surface waves 
at the high-frequency range, depending on the BC and medium properties. Zhang et  al. 
(2011) investigated the Rayleigh wave propagation at the free surface of Biot porous media 
and confirmed the existence of a second Rayleigh mode that propagates only for closed-
pore and partially permeable conditions. All these surface modes can be affected by the 
mesoscopic flow.

(34)�0 = D0exp(kz�0)exp[i(kx − �t)].

(35)M(2)D = 0,

(36)M
(2)

00
= 0, M

(2)

10
= −�0, M

(2)

20
= �0, M

(2)

30
= −�0,

(37)V =
[
Re

(
1

c

)]−1
and Q−1 = −

Im(c2)

Re(c2)
,

(38)det(M(1)) = 0 and det(M(2)) = 0
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4.4  Displacement Motions

Omitting exp[i(kx − �t)] , the displacements in the water layer I ( −H ≤ z < 0 ) can be 
obtained from Eqs. (23) and (28) as

where S0 = D0∕D3 is the amplitude ratio.
Similarly, in the effective Biot medium II, defined by z ≥ 0 , the displacements are

where cj = 1 − � + ��j , j = 1, 2, 3.
Substituting Eq. (25) into (40), we have

with Sj = Dj∕D3 , which can be determined from the singular system of BC (30) as

for the case when H ≠ 0 , including H = +∞ . For H = 0 , based on equation (32), the rela-
tion becomes

From the BC, the vertical displacements (uz)I and (uz)II at the interface z = 0 should be 
continuous, and their magnitudes decay significantly as the distance from the interface 
increases.

5  Examples

We consider the rock properties given in Table 1 (Pride and Berryman 2003a; Pride et  al. 
2004). We assume a concentric sphere geometry with inner radius a = 1 cm and outer radius 
R = 3a , so that the volume fractions are v2 = 0.037 and v1 = 1 − v2 = 0.963 . Correspond-
ingly, the volume to internal surface ratio V∕S = R3∕(3a2) = 9a , and the characteristic length 

(39)
(ux)

I =D3S0ikexp(−kH�0)
{
exp[k�0(z + H)] − exp[−k�0(z + H)]

}
,

(uz)
I =D3S0k�0exp(−kH�0)

{
exp[k�0(z + H)] + exp[−k�0(z + H)]

}
,

(40)
(ux)

II =(ux + wx)II =
��1

�x
c1 +

��2

�x
c2 −

��3

�z
c3,

(uz)
II =(uz + wz)II =

��1

�z
c1 +

��2

�z
c2 +

��3

�x
c3,

(41)

(ux)
II =

2∑
j=1

ikcjD3Sjexp(−kz�j) + c3D3k�3exp(−kz�3),

(uz)
II = −

2∑
j=1

k�jcjD3Sjexp(−kz�j) + c3D3ikexp(−kz�3),

(42)
⎡⎢⎢⎣

M00 M01 M02

M10 M11 M12

M20 M21 M22

⎤⎥⎥⎦

⎡⎢⎢⎣
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⎤⎥⎥⎦
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⎡⎢⎢⎣
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⎤⎥⎥⎦
,
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]
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[
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]
.
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is determined by L2
1
= 99a2∕28 . The composite consists of sand grains with bulk modulus 

Ks = 38 GPa, shear modulus �s = 44 GPa and density �s = 2650 kg/m3 . Phase 2 represents 
small pockets where the grains are poorly bonded, with �2 = 0.4 and �2 = 1 darcy. Phase 1 
is a more consolidated shaly sandstone with �1 = 0.2 and �1 = 0.01 darcy. The effective-
medium relation Kd

i
= (1 − 𝜙i)Ks∕(1 + c̃i𝜙i) is used to compute the drained bulk modulus 

Kd
i
 , where c̃i is the consolidation parameter. We consider c̃1 = 10 and c̃2 = 200 (Pride and Ber-

ryman 2003a). The dry-rock bulk modulus of the composite is computed as a harmonic aver-
age of the two constituent dry-rock moduli as 1∕Kd = v1∕K

d
1
+ v2∕K

d
2
 . The shear modulus 

� of the composite is frequency independent in Pride and Berryman (2003a) and is given by 
𝜇 = (1 − 𝜙)𝜇s∕(1 + c̃s𝜙) with c̃s = 10 . Viscoelastic mechanisms, for example, the Cole-Cole 
theory, may be used to alternatively model the shear wave attenuation (Liu et al. 2018). The 
tortuosity of phase i is defined as �i = 0.5 + 0.5∕�i for spherical grains (Berryman and Wang 
2000). The fluid saturating the porous medium is assumed to be the same as the overlying 
water and has the properties given in Table 2 (Gurevich et al. 2004).

Figures 2 and 3 show the phase velocities and dissipation factors of the three body waves 
as a function of frequency. The mesoscopic flow causes a significant P1-wave attenuation for 
frequencies smaller than 100 kHz, particularly at the exploration-geophysics band between 
10 Hz and 1 kHz, and consequently induces a significant velocity dispersion of approximately 
200 m/s, whereas it hardly affects the propagation of the slow P2 and SV modes. The reason is 
due to the fact that when a real-value shear modulus � is used, the shear-wave velocity is inde-
pendent on the mesoscopic-flow mechanism, as shown byEq. (19). The slow mode is disper-
sive at low frequencies and becomes wavelike at high frequencies. Even though its velocity is 
small, the propagation can remarkably influence the fast P1-wave energy and hence the prop-
erties of the surface wave, which carries information about the porous media. Basically, the 
presence of the slow P2 wave gives rise to a slow surface mode and transforms the Rayleigh 
and Stoneley waves into pseudo modes, which will be discussed in the following. At high fre-
quencies, the effect of mesoscopic flow disappears and the Biot global flow plays a dominant 
role, causing another attenuation peak at around 1 MHz.

5.1  Surface Waves

We first consider H = 0 to study the propagation of Rayleigh-type waves at the free surface 
of a porous medium. Equation (38) gives two surface waves (denoted as R1 and R2), where 
R1 propagates faster than the slow P2 wave but slower than the shear wave, leaking part of its 
energy into the slow mode (pseudo-Rayleigh wave), whereas R2 propagates slower than the 
P2 wave and is a true surface (Stoneley) wave (Zhang et al. 2011).

Table 1  Properties of the porous 
medium

K
s

�
s

�
s

�
1

�
2

�
1

�
2

a
(GPa) (GPa) (kg/m3) (darcy) (darcy) (cm)

38 44 2650 0.2 0.4 0.01 1 1

Table 2  Fluid properties
K
f
 (GPa) �

f
 (Pa s) �

f
 (kg/m3)

Water 2.22 0.001 1000
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Figures 4 and 5 show the phase velocity and dissipation factor of the R1 wave as a 
function of frequency. We observe that the R1 wave propagates slower than the shear 
wave with a dimensionless velocity ratio of approximately 0.9, but it is more attenu-
ated. The effect of the mesoscopic flow is mainly observed at frequencies less than 10 

Fig. 2  Phase velocity (a) and dis-
sipation factor (b) of the fast P1 
wave as a function of frequency. 
The M-F refers to “mesoscopic-
flow”

Fig. 3  Phase velocities of the 
slow P2 and shear waves as a 
function of frequency. The dotted 
and solid lines correspond to 
the results without and with the 
mesoscopic-flow attenuation, 
respectively
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Fig. 4  Phase velocity (a) and 
phase dimensionless velocity (b) 
with respect to the shear wave of 
the pseudo-Rayleigh wave (R1) 
as a function of frequency, at the 
surface of a porous medium

Fig. 5  Dissipation factor of the pseudo-Rayleigh wave (R1) at the surface of a porous medium. The result of 
the shear wave is plotted as a comparison
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kHz, inducing an additional attenuation peak, particularly at the exploration-geophysics 
band between 10 Hz and 1 kHz, and consequently causing a quite significant velocity 
dispersion at low frequencies. The phenomenon is similar to the P1-wave propagation 
in Fig.  2. The second attenuation peak at high frequencies is due to the Biot global 
flow. The boundary conditions affect the propagation mainly at frequencies higher 
than 1 kHz. The reason is due to the fact that at low frequencies, the slow wave hardly 
propagates and the free surface becomes equivalent to the elastic (non-porous) one. The 
open-pore BC yield a lower velocity of R1 wave but imply a higher attenuation than 
the sealed-pore BC, possibly due to the energy transfer between the fast and slow wave 
modes through the open pores.

Figure 6 shows the phase velocity of the true surface mode R2. This mode is wave-
like only at high frequencies for sealed-pore BC, and has a velocity slightly smaller 
than that of the slow P2 wave. At low frequencies, it becomes highly dispersive. Hence 
the presence of the slow surface mode is related to the impermeable BC. A similar true 
surface mode was observed by Zhang et al. (2011) using the classical Biot theory, where 
it is referred to as the true Stoneley wave. The influence of mesoscopic flow on R2 is 
negligible at all frequencies.

Figure 7 shows the absolute displacements of the R1 wave as a function of depth at 
a frequency of 100 Hz. The displacement decreases as the depth increases due to the 
energy decay and shows a critical depth of 40  m, approximately twice the R1 wave-
length. The critical depth defined here refers to the depth at which the absolute displace-
ments are approximately zero. The horizontal displacement shows a sharp variation at 
approximately 4 m, indicating a change in trajectory of the particle motions. In the pres-
ence of mesoscopic-flow attenuation, the displacement is more attenuated. At 100 Hz, 
the R2 wave hardly propagates and its displacements are not displayed.

Fig. 6  Phase velocity of the true surface (Stoneley) wave (R2) at the surface of a porous medium. The phase 
velocity of the slow P2 wave is plotted in solid blue line as a comparison. The R2 wave does not propagate 
for the open-pore BC
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5.2  Waves at a Liquid/Solid Interface

Next, we consider H = +∞ , the same problem studied by Feng and Johnson (1983a) using 
the classical Biot theory, to investigate the propagation of Stoneley and Rayleigh waves at 
the fluid/porous medium interface. Equation (38), with the constraint of Re(k𝜉j) > 0 , yields 
two surface waves. The first one propagates slower than the fluid bulk mode, but faster than 
the slow P2 wave, and hence it is called pseudo-Stoneley wave (Feng and Johnson 1983a). 
The second one propagates slower than all the body waves and leaks no energy, and is 
termed true Stoneley wave.

Figures 8 and 9 show the phase velocity and dissipation factor of the pseudo-Stoneley 
wave that exists for both sealed and open BC. We see that the mesoscopic flow mainly 
induces an attenuation peak at low frequencies, particularly at the exploration band around 
100  Hz, and hence causes an observable velocity dispersion. Around 1  MHz, the Biot 
global flow results into another attenuation peak. The two peaks are weaker compared 
with those of the R1 wave in Fig. 5. The effect of the BC is mainly observed at frequen-
cies higher than 1 kHz. Compared with the sealed-pore BC, the open one yields a stronger 
global-flow attenuation, and consequently a more significant dispersion, causing the veloc-
ity to be higher at high frequencies. The pseudo-Stoneley wave propagates slower than the 
acoustic wave in water, with a dimensionless velocity V∕v0 approximately equal to 0.97.

The true Stoneley wave exists only for sealed-pore BC, and its phase velocity is dis-
played in Fig. 10. Similar to the R2 wave, the true Stoneley wave resembles the bulk slow 
P2 wave, which is dispersive at low frequencies, and becomes wavelike at high frequencies 
with a slightly smaller velocity than the P2 wave. A similar wave at high frequencies was 
observed by Feng and Johnson (1983a), where they concluded that the true Stoneley mode 
is asymptotically the bulk slow wave. The effect of mesoscopic flow is negligible, similar 
to the P2 wave.

Figure  11 shows the absolute displacements of the pseudo-Stoneley wave at a fre-
quency of 100 Hz. The vertical displacements are continuous at the interface, consistent 
with the BC, whereas the horizontal displacement in water is much larger. The displace-
ments in water decay slower. The critical depths in the porous and water half-spaces are 

Fig. 7  Absolute values of the dis-
placements of the R1 wave as a 
function of depth at 100 Hz. The 
displacements are normalized 
by the vertical uz at the surface 
z = 0 when the mesoscopic-flow 
is present. The open-pore BC 
are used
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Fig. 8  Phase velocity (a) and 
phase dimensionless velocity 
with respect to v

0
 (b) of the 

pseudo-Stoneley wave as a func-
tion of frequency, at the interface 
between water and a porous 
half-space

Fig. 9  Dissipation factor of the pseudo-Stoneley wave as a function of frequency, at the interface between 
water and a porous half-space
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approximately 15 m and 50 m, corresponding to 1 and 3.3 times the pseudo-Stoneley wave-
length, respectively. The mesoscopic-flow attenuation slightly affects the displacements, 
and the effect is particularly significant for the horizontal displacement in water. Similar 
to the R1 wave in Fig. 7, a sharp variation of the absolute horizontal displacement in the 
porous half-space is observed.

All the above results are obtained with the restriction Re(k𝜉j) > 0 , a condition for 
energy decay of surface waves away from the interface, which is also required by Feng 
and Johnson (1983b) in the derivation of the Green function. However, as stated by Feng 

Fig. 10  Phase velocity of the true Stoneley wave at the interface between water and a porous half-space 
for sealed-pore BC. The result of the slow P2 wave is plotted in solid blue line as a comparison. The true 
Stoneley wave does not exist for the open-pore BC

Fig. 11  Absolute values of the 
displacements of the pseudo-
Stoneley wave as a function of 
depth at 100 Hz. The displace-
ments are normalized by the 
vertical uz at the surface z = 0 
when the mesoscopic flow is 
present. The open-pore BC are 
used. The solid and dotted lines 
represent the results without and 
with mesoscopic-flow attenua-
tion, respectively
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and Johnson (1983a), if the dispersion equation with Re(k𝜉j) < 0 has a complex velocity 
solution close to the real axis, its effect can be seen in the Green function. Therefore, Feng 
and Johnson (1983a) alternatively adopted the restriction Re(k�j) − Im(k�j) ≥ 0 , and found 
another pseudo-Rayleigh mode at very high frequencies that propagates faster than the 
fluid bulk mode but slower than the SV wave, which is in agreement with the results of the 
Green function. This restriction is analogous to the treatment of the pseudo-Rayleigh mode 
for the fluid/elastic solid case (Carcione and Helle 2004; Carcione et al. 2018).

When the restriction Re(k�j) − Im(k�j) ≥ 0 is applied, in addition to the pseudo-Stone-
ley and true Stoneley waves in Figs. 8, 9 and 10, our computation also predicts a pseudo-
Rayleigh mode, in agreement with the results of Feng and Johnson (1983a). The corre-
sponding phase velocity and dissipation factor as a function of frequency are displayed 
in Figs. 12 and 13. Unlike the R1 wave and pseudo-Stoneley wave in Figs. 5 and 9, the 
pseudo-Rayleigh mode in this case suffers a very significant attenuation for all frequen-
cies, indicating that its propagation is restricted. The results are similar to those observed 
by Feng and Johnson (1983a) and Chao et al. (2006). The reason is because the pseudo-
Rayleigh mode at a fluid/porous medium interface radiates energy into the slow wave and 
the fluid bulk mode, and is damped by a combination of radiation and viscous fluid-solid 
interaction, as was investigated in Gubaidullin et al. (2004).

The effect of mesoscopic flow is similarly observed at low frequencies, causing veloc-
ity dispersion and attenuation between 10 and 300 Hz. The phase velocities with open BC 
decrease at high frequencies, whereas those with sealed BC increase, a phenomenon quite 

Fig. 12  Phase velocity (a) and 
phase dimensionless velocity 
with respect to V

sh
 (b) of the 

pseudo-Rayleigh waves as a 
function of frequency, at the 
interface between water and a 
porous half-space
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different from the pseudo-Stoneley case, which is similarly observed in Gubaidullin et al. 
(2004) for open BC. It should be noted that the pseudo-Rayleigh mode propagates under 
certain conditions depending on the stiffness of both the porous solid and fluid. For exam-
ple, if the shear-wave velocity is smaller than the bulk fluid velocity, there is no pseudo-
Rayleigh mode (Feng and Johnson 1983a).

5.3  Waves at the Interface Between a Water Layer and a Porous Medium

Finally, we consider the general case with a finite thickness H of the water layer. Such 
case can be relevant for studying surface-wave propagations at the ocean floor, with seabed 
modeled as a heterogeneous porous medium and overlaid by a layer of seawater. In addi-
tion to the true Stoneley wave, the calculations predict high-order surface modes, as dis-
played in Fig. 14, quite similar to the results of elastic layered media. The cut-off frequency 
regards the higher-order modes, and it increases with increasing order. (The number of 
modes increases at high frequency.) Decreasing H implies an increased cut-off frequency 
for each mode. At the cut-off frequency, the velocity of each mode has an upper limit equal 
to the shear-wave velocity, and it decreases with increasing frequency, reaching a limit at 
high frequencies equal to 1490 m/s, the velocity of the acoustic wave in water, indicating 
that the higher-order modes are pseudo-Rayleigh waves.

Figure 15 shows the phase velocity and dissipation factor of the fundamental mode 
for four different values of H. At the low-frequency limit, the velocity tends to an 
asymptotic value of 1991 m/s = 0.898 Vsh , corresponding to the velocity of the pseudo-
Rayleigh wave (R1) traveling along the free surface of a porous half-space (see Fig. 4). 
At high frequencies, the velocity becomes identical to that of H = +∞ , corresponding 
to the propagation of a pseudo-Stoneley wave (see Fig. 8). As a consequence, there is 
stronger velocity dispersion and attenuation at intermediate frequencies between 1 Hz 
and 1 kHz, unlike the case H = +∞ . The larger the H the weaker the attenuation, and 
the lower the dispersion frequency. Note that the velocity at low frequencies is higher 

Fig. 13  Dissipation factor of the pseudo-Rayleigh wave as a function of frequency, at the interface between 
water and a porous half-space
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than the bulk fluid velocity v0 , but at high frequencies, it becomes lower. This implies 
that the fundamental mode is the pseudo-Rayleigh wave at low frequencies but it 
becomes the pseudo-Stoneley wave at high frequencies. The effect of the BC is noticed 
at high frequencies, since at low frequencies, the slow wave does not propagate. The 
open BC predict a higher attenuation and consequently a slightly higher velocity disper-
sion, than those of the sealed-pore case, which is not dependent on H.

Figure 16 shows the absolute displacements of the fundamental mode (pseudo-Stone-
ley wave) as a function of depth at 100 Hz with H = 20 m and H = 50 m. The behavior 
is quite similar as in Fig. 11. The energy does not completely decay at the water surface 
when H = 20  m, unlike the case H = 50  m. The mesoscopic-flow attenuation slightly 
affects the displacements, and the effect is more significant in the water layer. Figure 17 
shows the displacements of the fundamental mode for H = 5 m (pseudo-Rayleigh wave), 
corresponding to 0.31 times the pseudo-Rayleigh wavelength. The vertical displace-
ments are continuous at the interface whereas the horizontal ones are not. The horizon-
tal displacement in water is higher and significantly decays to zero at the water surface. 
The critical depth in the porous medium is 16 m, approximately the pseudo-Rayleigh 
wavelength.

Figure  18 shows the phase velocity and dissipation factor of the first-order sur-
face mode for H = 20  m and 50  m, when sealed-pore BC are used. The mesoscopic 
flow induces an evident attenuation peak, and results in a slight decrease of the phase 

Fig. 14  Phase velocity of the 
surface waves as a function 
of frequency at the interface 
between a finite water layer and a 
porous half-space, with thickness 
a H = 20 m and b H = 50 m. 
The BC are sealed and the 
mesoscopic flow is assumed 
present. The black lines represent 
the results of the fundamental 
mode, whereas the coloured lines 
indicate the results of high-order 
surface modes. The dashed line 
represents the fluid bulk velocity 
v
0
 . The surface mode having 

velocity higher than v
0
 is the 

pseudo-Rayleigh wave, whereas 
that with velocity smaller than v

0
 

is the pseudo-Stoneley wave
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velocity. The larger thickness H implies a smaller relaxation frequency. The behavior is 
similar for the other high-order modes.

In addition to the high-order surface modes, the computation with sealed-pore BC also 
gives the true Stoneley wave, as displayed in Fig. 19. We observe that this wave resembles 
the bulk slow P2 wave, except for a slight difference at high frequencies. Its propagation is 
not evidently affected by the thickness H, and the results overlap that of H = +∞.

6  Discussions

The present study presents a theoretical analysis for surface-wave dispersion due to meso-
scopic flow. Evidence from laboratory measurements and field observations is still lack-
ing, possibly because of the difficulty in conducting the measurements, and because the 
observed data may also be affected by scattering attenuation in the presence of strong 
heterogeneities. Adler and Nagy (1994) measured the ultrasonic velocity dispersion and 
attenuation of the surface waves at the water/porous medium interface. Their results are 
consistent with the theoretical predictions of Feng and Johnson (1983a). In particular, their 
results demonstrate the existence of the slow true surface (Stoneley) wave when the BC is 
sealed. They attributed the attenuation to the viscous drag between the saturating fluid and 

Fig. 15  Phase velocity (a) and 
dissipation factor (b) of the 
fundamental mode as a function 
of frequency at the interface 
between a water layer and a 
porous half-space for four differ-
ent values of thickness H, when 
the mesoscopic-flow is present. 
The results of H = +∞ are 
displayed for comparison. The 
dashed line in (a) corresponds 
to the velocity of the fluid bulk 
velocity v

0
 = 1490 m/s. The 

mode is the pseudo-Rayleigh 
wave at low frequencies since the 
velocity is larger than v

0
 , whereas 

it is the pseudo-Stoneley wave 
at high frequencies where the 
velocity is smaller than v

0
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the porous frame. The mesoscopic flow is not mentioned, since the measurement is made 
at ultrasonic frequencies.

In this work, the dispersion equation is numerically solved by using the Muller iteration 
method. One way to verify the solutions is to derive the analytical Green function for the 
fluid/porous medium interface system. Feng and Johnson (1983b) derived the 2D reflection 

Fig. 16  Absolute values of the displacements of the fundamental mode (the pseudo-Stoneley wave) as a 
function of depth at 100 Hz, for two different values of H. The displacements are normalized by the vertical 
uz at the surface z = 0 when the mesoscopic-flow is present. The open-pore BC are used. The solid and dot-
ted lines represent the results without and with mesoscopic-flow attenuation, respectively

Fig. 17  Absolute values of the 
displacement of the fundamen-
tal mode (the pseudo-Rayleigh 
wave) as a function of depth 
at 100 Hz, for H = 5 m. The 
displacements are normalized by 
the vertical uz at the surface z = 0 
when the mesoscopic flow is 
present. The sealed-pore BC are 
used. The solid and dotted lines 
represent the results without and 
with mesoscopic-flow attenua-
tion, respectively
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Green function based on the Cagniard-de Hoop method, but their results hold for the high-
frequency limit of the classical Biot theory (Carcione 2022), where the viscous dissipation 
is ignored, which therefore cannot be directly applied here.

For layered porous media, not considered here, the results can be more complex. For 
example, at the free surface of layered porous media, there are higher-order Rayleigh 
modes, similar to the case of layered elastic solids. These modes are pseudo-Rayleigh 
waves because they leak energy into the slow P2 wave. Their signatures depend on the 
medium properties and frequency. Generally, the velocity of the fundamental mode ranges 
between the Vmax

r
 at low frequencies and Vmin

r
 at high frequencies, with Vmax

r
 and Vmin

r
 rep-

resenting the maximum and minimum phase velocities of the pseudo-Rayleigh waves that 
propagate at the surface of each porous layer. Whereas the high-order modes have veloci-
ties ranging from the Vmax

s
 at the cut-off frequencies and Vmin

s
 at high frequencies, with Vmax

s
 

and Vmin
s

 representing the maximum and minimum velocities of the shear waves among the 
layered media. For intermediate frequencies, both the fundamental and high-order modes 
undergo a velocity decrease, due to a geometrical dispersion mechanism present in layered 
media. On the contrary, the mesoscopic-flow mechanism increases the velocity at these 
frequencies, as shown in Fig. 4, a consequence of the velocity increase in the body waves. 
These are the two mechanisms affecting the surface-wave dispersion in layered media, 
which are generally coupled together, making the propagation more complex. In real cases, 

Fig. 18  Phase velocity (a) and 
dissipation factor (b) of the 
first-order surface mode (the 
pseudo-Rayleigh wave), at the 
interface between a water layer 
and a porous half-space with two 
different values of thickness H 
and sealed-pore BC
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the variations in shear-wave velocity in layered media are much more significant, and 
hence the geometrical dispersion plays a dominant role, causing decreased velocities from 
low to high frequencies. The detailed influence of the mesoscopic flow on surface-wave 
propagation in layered porous media will be investigated in a future study.

In real applications, it is a common practice to use the surface-wave velocity disper-
sion and attenuation to estimate the formation properties like the permeability and shear 
velocity (e.g., Cheng and Cheng 1996; Tang and Cheng 1996). Neglecting the attenuation 
induced by mesoscopic flow affects the interpretation. The results presented here can pro-
vide insights for improving quantitative reservoir characterization on the basis of surface-
wave properties. Ongoing research includes the effect of the medium properties.

Shear-wave attenuation due to mesoscopic flow is not considered in the present work. 
This attenuation can be modeled by using a complex modulus based on the viscoelastic 
theory (e.g., Liu et al. 2018), or a fluid-flow based unrelaxed mechanism (e.g., Mavko and 
Jizba 1991), which will be investigated in a future work.

7  Conclusions

We have analyzed the propagation of surface waves at the interface separating a water layer 
and a porous medium described by the so-called effective Biot theory where mesoscopic-flow 
attenuation plays an important role. Special cases are considered by assuming the thickness 
of the water layer to be zero and infinity, corresponding to the propagation of Rayleigh- and 
Stoneley-type waves. In the case we study, we find a pseudo-Rayleigh wave and a true (Stone-
ley) mode at the surface of a porous half-space (zero thickness), whereas for infinite thick-
ness, we predict a pseudo-Stoneley wave, a pseudo-Rayleigh wave, and a true surface mode. 
The mesoscopic flow mainly affects the propagation of pseudo waves at frequencies lower 

Fig. 19  Phase velocities of the true Stoneley wave at the interface between a water layer and a porous half-
space with different values of thickness H and sealed-pore BC. The result of slow P2 wave is plotted (in 
dashed line) as a comparison. Note that the results with different H overlap. With the open-pore BC, the 
true Stoneley wave does not exist
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than 10 kHz, particularly at the seismic band, inducing an attenuation peak and consequently 
velocity dispersion, whereas the effect of the boundary conditions (open and closed) is mainly 
observed at high frequencies. True Stoneley wave exists only for sealed boundary conditions 
and resembles the slow P2 wave, which is hardly affected by the mesoscopic flow. In the case 
of a nonzero thickness of the water layer, in addition to the true Stoneley wave, we predict 
high-order surface modes. The mesoscopic flow similarly induces an extra attenuation peak 
for each mode, which decreases and moves to lower frequencies as the thickness increases.

Appendix A: Complex Coefficients of the Effective Biot Medium

From Pride et al. (2004) and Liu et al. (2009), the complex coefficients are

where aij are the real  double-porosity constants corresponding to the high-frequency 
response for which no internal fluid pressure relaxation can take place. These real coef-
ficients are (Pride et al. 2004)

where subscript i = 1 or 2 denotes the phase 1 or 2, respectively, vi is the volume frac-
tion, Kd

i
 is the bulk modulus of the dry-rock frame, Kd is the dry-rock bulk modulus of the 

composite,

Bi is the Skempton coefficient,

where Ks and Kf are the bulk moduli of the grains and fluid, respectively, and �i is the 
porosity. Moreover, �i is the Biot-Willis coefficient of phase i, given by
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where Ku
i
 is the Gassmann wet-rock bulk modulus (confining pressure change divided by 

dilatation for a sealed sample), and is given by

Substituting equation (A6) into (A5), we obtain

The frequency-dependent internal transport coefficient �(�) is derived by Pride et  al. 
(2004) as

where �m and �m are parameters dependent on the constituent properties and the meso-
scopic geometry. When the embedded phase 2 is very permeable, �m can be expressed by

where � is the fluid viscosity, �i is the permeability of phase i, B0 is the static Skempton 
coefficient of the composite, given by

R1 is the ratio of the average confining pressure in phase 1 to the pressure applied to the 
external surface of the double-porosity composite, given by

and L1 represents the characteristic length of the fluid pressure gradient.
In terms of �m , �m is

with V/S representing the volume-to-surface ratio, where S is the surface area of the inter-
face between the two phases in each volume V of composite.

In a concentric sphere geometry (a composite (phase 1) of radius R contains a small sphere 
of radius a of phase 2), satisfying 𝜅1∕𝜅2 ≪ 1,

In this case, the volume fractions v1 and v2 are defined as
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and the total porosity is

Appendix B: Components of Matrix M

The elements of matrix M are

Next, we compare the above equations with those of Feng and Johnson (1983a). By letting 
H = +∞ and P = A + 2N , and defining

in the same manner as Feng and Johnson (1983a), the first equation in (30) becomes

By substituting �j in equation (25) into (B6), we derive equation (C2) of Feng and Johnson 
(1983a).

The second equation in (30) becomes
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D0 =C0, D1 = C1, D2 = C2, D3 = iC3,
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which is Eq. (C1) of Feng and Johnson (1983a).
The third equation in (30) becomes

which is equation (C3) of Feng and Johnson (1983a), where they instead use � = �.
The last equation in (30) becomes

By multiplying −�c2 on both sides, we derive equation (C4) of Feng and Johnson (1983a).
It is evident that the equations of Feng and Johnson (1983a) are special cases of our 

equations when H = +∞ . Moreover, our equations use frequency-dependent elastic 
coefficients associated with the mesoscopic fluid flow, and hence are more realistic for 
low-frequency surface-wave propagation.
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