
1. Introduction
The exploration of unconventional oil/gas resources under complex geological conditions is an important as-
pect of applied geophysical studies in the petroleum industries (e.g., Avseth & Carcione, 2015). The interpre-
tation based on seismic data is helpful for understanding the reservoir properties, but an optimal model and 
wave-propagation approach are required to honor the in situ geological conditions. Classical methods use a priori 
lithological and petrophysical information and partial differential equations (PDEs), while real data is used for 
verification and calibration. Different dynamical equations have been proposed. Biot studied wave propagation 
in fully saturated porous media (Biot, 1956a, 1956b, 1962), but could not explain the level of attenuation at seis-
mic frequencies, while Dvorkin and Nur (1993) and Dvorkin et al. (1995) introduced the Biot-squirt model and 
made some progress in this sense. Pride and Berryman (2003a, 2003b) established the governing equations for 
propagation in double-porosity dual-permeability (DPDP) media, where the mesoscopic-loss mechanism proper-
ly describes the frequency dependency of the seismic properties. A similar double-porosity theory was proposed 
by Ba et al. (2011), known as the Biot-Rayleigh (BR) model, assuming porous spherical inclusions embedded 
in a host skeleton. Ba et al. (2017) and Zhang et al. (2021) presented a double double-porosity model, where the 
heterogeneities include the pore structure and patchy saturation, and W. Sun et al. (2018) proposed a three-layer 
ellipsoidal fluid patch based on the BR model. Berryman (1988) assume two immiscible fluids and derived wave 
equations based on a variational method. The theory by Santos, Corberó, & Douglas (1990) and Santos, Douglas, 
et al. (1990) generalizes that of Biot to partial saturation of immiscible fluids by considering capillary effects. 
Other similar models include Lo et al. (2005, 2006) and Tuncay and Corapcioglu (1996).
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properties and well-log data are essential to establish wave-propagation models. Specifically, the description 
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properties. By training DNNs with different initial parameters, the uncertainty of the proposed method can 
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constitutive relations are predicted by DNNs. The resulting dynamical equations describe the dispersion and 
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Plain Language Summary We develop a model to estimate the underground conditions, based on 
two machine-learning techniques by using measurement data as input. The first uses pure data-driven surrogate 
models, while the second is based on the classical wave propagation model in fluid-saturated porous medium 
proposed by Biot, where deep neural networks predict the elastic coefficients so that the theoretical seismic 
properties match the actual measurements. The two models are tested on the basis of data from five wells 
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be used to predict more reservoir properties.
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The presence of fabric heterogeneity and multi-phase fluids complicate the interpretation (Liu et  al.,  2018). 
Moreover, the number of differential equations increases the difficulty and computation cost of seismic inver-
sion and wavefield simulation. Some studies focus on effective models (e.g., Pride et al., 2004), and the DPDP 
equations can be expressed as Biot's equations, but with complex and frequency-dependent coefficients. Liu 
et al. (2016, 2018) and Zhao et al. (2015, 2016, 2020) considered these effective poro-elastic and poro-viscoelas-
tic equations, respectively.

Machine learning (ML) techniques, such as deep neural networks (DNN), can be applied to solve geophysical 
problems. For instance, the generative adversarial network has been used for digital rock reconstruction (You 
et al., 2021) and seismic waveform synthesis (N. Wang et al., 2021; T. Wang et al., 2021). Qadrouh et al. (2019) 
give a tutorial on ML, including petrophysical log prediction. Specifically, they applied a neural network (NN) 
to relate the density, sonic, gamma ray, and neutron-porosity logs with permeability. Synthetic data are generat-
ed according to a theoretical model developed by Carcione et al. (2000) for training and test. You et al. (2020) 
invert for shale-anisotropy by using a DNN model, based on the Hudson-Cheng forward model (Cheng, 1993) to 
generate a large amount of training data. Compared with the traditional time-consuming and computationally ex-
pensive methods (e.g., Barajas-Solano et al., 2015; Li et al., 2019; Wiese et al., 2018), this new approach is faster. 
In fact, this direct DNN-based method can also be used for efficient wavefield simulations (Moseley et al., 2020). 
However, this method is fully data-driven both for the forward and inverse problems.

Other techniques train the governing equations from data (e.g., Brunton et al., 2016; Champion et al., 2019; Ka-
rimpouli & Tahmasebi, 2020; Raissi et al., 2019; Rudy et al., 2019). There are also some model-building methods 
in high-dimension parameter space based on an optimization principle (Han et al., 2013, 2017). However, the 
governing equations can be well established, but their coefficients are not. Tartakovsky et  al.  (2020) studied 
subsurface flow assuming a known dynamical equation, but an unknown hydraulic conductivity. They applied 
a physics-informed neural network (PINN) proposed by Raissi et al. (2017a, 2017b, 2019) to simulate the flow 
and learn the unknown field from data. The DNN model was used to predict the hydraulic conductivity so that 
the calculated state quantity could match the data. Similarly, Wang et al. (2020), N. Wang et al. (2021) and T. 
Wang et al. (2021) proposed a theoretical guidance neural network to simulate subsurface flow. More realistic 
results can be obtained by adding more penalty terms to the loss function. PINN can also be used as a solver of 
the acoustic wave equations to speed up the simulation (Pettit & Wilson, 2020; Song et al., 2021).

One potential problem in the aforementioned studies is the source of training data, coming from the solution of 
theoretical models rather than from actual measurements. The purpose of this study is to learn the wave-propaga-
tion model from measured data by means of ML, which differs from the forward modeling methods. We develop 
a new approach to establish models based on DNN when log data and rock-physics data are available. Two DNN-
based wave propagation model building methods are proposed and compared. In the first method, described in 
Section 2, DNN is trained to obtain a surrogate model describing wave propagation. Such a method is easy to 
implement, and the accuracy is highly dependent on the amount of training data. The physics is not present in this 
method since it produces a pure data-driven model. The second DNN-based method is introduced in Section 3. It 
assumes that the wave equation describing propagation in shale-oil reservoirs is known, while their coefficients 
need to be learned from data. DNN models are designed to predict these coefficients so that the predicted seismic 
properties computed by a plane-wave analysis method can match the data. As a result, wave equations in the form 
of PDEs along with surrogate models of elastic coefficients are obtained. The two kinds of DNN models are 
trained and tested with the same data set. Examples are given in Section 4, and the advantages and disadvantages 
of the two methods are discussed.

2. DNN-Based Surrogate Model
2.1. Data, Input, and Output

The data include the well-log measurements of 16 wells of shale-oil reservoirs from Ordos basin, China, which 
is an inland depression lake in Late Triassic. A set of continental clastic rock sedimentary formations developed 
in the Yanchang Formation. The Chang 7 member contains organic rich shale with an extensive distribution area, 
which is the main target of unconventional oil exploration (Bai & Ma, 2019; Fu et al., 2020). The oil in tight 
sandstones, siltstones and shales of the Chang 7 member are considered typical shale-oil resources. The data 
were measured by the instruments of Schlumberger's SonicScope and provided by the Changqing Oilfield of  
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PetroChina. After pre-processing, there are 21,215 effective data points from these wells for training and tests, 
where all quantities are available. The amount of data is different for each well. Five wells with relatively abun-
dant data points are selected as a test set and the rest, with 10,004 data points, constitute the training set. Figure 1 
shows the data samples from one of the wells, including porosity, lithology, and the seismic attributes.

By analogy with the classical wave-propagation model, six parameters are selected, namely, porosity ϕ, bulk 
modulus of fully saturated rock K, shear modulus of fully saturated rock μ, density ρ, permeability κ, and 
water saturation Sw. Saturation is selected since there is oil and water in the pore space. The properties of 
water and shale oil can be obtained from the literature (e.g., Fu et al., 2020). Permeability κ can be estimat-
ed by the Kozeny-Carman equations (Carman,  1961) or calculated based on pore network model (Bernabé 
et al., 2011, 2016) in the absence of actual measurements. The stiffnesses of the rock cannot be measured direct-
ly in logging data, but can be estimated from the P and S slownesses and density. The bulk and shear moduli of 
the mineral, Ks and μs, can be inferred from K and μ based on Gassmann's equation (Gassmann, 1951), where 
the bulk and shear moduli of the skeleton, Kb and μb, are estimated from the Krief model (Krief et al., 1990), 
and it is assumed that μ equals μb.

Note that K, μ, and κ are dependent on ϕ in general, thus by adding these three quantities, the influence of porosity 
is enhanced. Other quantities, such as depth, gamma ray, and resistivity are not selected, since they are not used 
in classical elastic wave-propagation models. Moreover, in DNN training, more quantities may lead to overfitting. 
The seismic properties include the velocities of the P- (VP) and S- (VS) waves (labels), commonly available data 
from downhole measurements. In addition, the corresponding quality factors can be obtained by using the median 

Figure 1. Logging data from a well intersection shale-oil reservoirs. The subplot on the left end gives the volume fractions of the mineral constituents, where green, 
red, and yellow represent clay, shale, and quartz, respectively. The other subplots from left to right are P wave velocity, S wave velocity, porosity, bulk density, bulk 
modulus, shear modulus, permeability in log10 scale and water saturation.
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frequency-shift method (Frazer et al., 1997; Qi et al., 2021; X. Sun et al., 2000) if the conditions of the data allow 
it. To summarize, the inputs to DNN, 𝐴𝐴 𝐗𝐗 , are ϕ, K, μ, ρ, κ, and Sw, and the outputs, 𝐴𝐴 𝐘𝐘 , are VP and VS.

2.2. DNN-Based Surrogate Model

DNN can process nonlinear dependencies between different data sets. Its performance is severely affected by 
hyperparameters (variables that need to be determined a priori), which determine the structure of the network 
and how this is trained. How to determine these optimal parameters remains an active area of research but falls 
outside the scope of this study. Here, we do it by trial and error, requiring the highest test accuracy. It is found the 
optimal DNN has five hidden layers, and each layer 30 units. As shown in Figure 2, in addition to hidden layers, 
DNNs have input and output layers. The NNs in this study are built based on PyTorch (Paszke et al., 2017). The 
activation function is the hyperbolic tangent (tanh). The adaptive moment estimation (Adam) optimizer is used 
(Kingma & Ba, 2014), and the initial learning rate is 0.001. The training process updates the network parameters, 
that is, weights and bias, to minimize the loss function, which is the mean square error (MSE) between the DNN 
predictions and the given labels (e.g., Qadrouh et al., 2019).

A normalization of the input quantities is needed before training because the magnitudes differ, affecting the 
convergence and stability of the training process, and the problem of a vanishing gradient can be improved after 
data normalization by using tanh. The input of the DNN is the data after processing, where each input, denoted 
as xi, is normalized to [−1, 1] as:

𝑥𝑥′
𝑖𝑖 =

2
max {𝑥𝑥𝑖𝑖} − min {𝑥𝑥𝑖𝑖}

(𝑥𝑥𝑖𝑖 − min {𝑥𝑥𝑖𝑖}) − 1, (1)

where 𝐴𝐴 𝐴𝐴 = 1, 2,⋯ , 6 corresponds to the six quantities, respectively.

There is the same problem with 𝐴𝐴 𝐘𝐘 and normalization is required. Each label (VP or VS) is normalized by dividing 
by 1,000. This is due to the fact that 𝐴𝐴 𝐘𝐘 is unknown when the DNN is used to predict the seismic properties. The 
real input and output of the DNN model are 𝐴𝐴 𝐗𝐗′ and 𝐴𝐴 �̂�𝐘′ , respectively, and 𝐴𝐴 �̂�𝐘′ is re-scaled to the physical range via 
denormalization. Alternatively, one can set weights for each 𝐴𝐴 𝐘𝐘 component when defining the loss function.

Figure 2. Diagram of the deep neural network as a surrogate model, where ① and ② correspond to the method described in Sections 2 and 3, respectively.
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The six input quantities are selected in this section, each having a different impact on VP and VS. The sensitivity 
of the seismic properties to each rock-physics parameter can be analyzed once the DNN-based surrogate model is 
obtained. By taking VP as an example, the sensitivity function χi vs. xi can be defined as (Hamby, 1994):

�� =
|

|

|

|

|

��̂�

���
⋅
��

�̂�

|

|

|

|

|

, (2)

where 𝐴𝐴 𝐴𝐴 = 1, 2,⋯ , 6 . Equation  2 can be computed by using the automatic differential mechanism (Paszke 
et al., 2017).

3. Data-Driven Design of Wave Equations
To build the wave equations, their form and related coefficients are to be determined. A similar DNN-based 
method can be used to learn the new model from data.

3.1. DNN Approach of Unknown Constants

To simplify the problem, it is assumed that the form of the wave equations is consistent with that of Biot's theory 
(Carcione, 2014), while the elastic coefficients are unknown. The wave equations to be learned can be written as:

⎧

⎪

⎨

⎪

⎩

�∇2� + (� +�)∇� +�∇� = �11�̈ + �12�̈ + � ⋅ (�̇ − �̇),

�∇� +�∇� = �12�̈ + �22�̈ − � ⋅ (�̇ − �̇),

 
(3)

where 𝐴𝐴 𝐮𝐮 and 𝐴𝐴 𝐔𝐔 are the basic unknowns that represent the displacements of the solid and fluid phases, respectively, 
𝐴𝐴 𝐴𝐴 = ∇ ⋅ 𝐮𝐮 and 𝐴𝐴 𝐴𝐴 = ∇ ⋅ 𝐔𝐔 are the corresponding dilatations, 𝐴𝐴 ∇ is the gradient operator and a dot above each quan-

tity denotes the time derivative. ρ11, ρ12, and ρ22 are density constants, and b is the dissipation coefficient. Biot's 
theory is applied to determine ρ11, ρ12, ρ22, and b (See Appendix A). It is assumed that the elastic constants A, N, 
Q, and R in Equation 3 are unknown, and DNNs are used to estimate them from data. In this case, the coefficients 
are dependent on ϕ, Ks, μs, and Kf according to Biot's theory, where Kf is the fluid bulk modulus. The input of 

Figure 3. Loss curve of a DNN model. Training and test loss are denoted with the orange and blue solid curves, respectively.
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the DNN model 𝐴𝐴 �̃�𝐗 consists of ϕ, K, μ, and Sw, where Sw is used instead of the bulk modulus of the fluid mixture. 
DNN models are introduced to obtain the elastic constants as:

𝐴𝐴(�̃�𝐗) ≈ �̂�𝐴(�̃�𝐗; 𝜃𝜃1) = DNN(�̃�𝐗; 𝜃𝜃1), 𝑁𝑁(�̃�𝐗) ≈ �̂�𝑁(�̃�𝐗; 𝜃𝜃2) = DNN(�̃�𝐗; 𝜃𝜃2),

𝑄𝑄(�̃�𝐗) ≈ �̂�𝑄(�̃�𝐗; 𝜃𝜃3) = DNN(�̃�𝐗; 𝜃𝜃3), 𝑅𝑅(�̃�𝐗) ≈ �̂�𝑅(�̃�𝐗; 𝜃𝜃4) = DNN(�̃�𝐗; 𝜃𝜃4),
 (4)

where θ1, θ2, θ3, and θ4 are neural-network parameters, obtained by minimizing the loss function. The predictions 
of VP and VS have to be computed by using Equation 3 to build the loss function. A plane-wave analysis (Car-
cione, 2014) is used to obtain VP and VS (See Appendix A). Then we have:

𝑉𝑉𝑃𝑃 ≈ 𝑉𝑉𝑃𝑃 (𝐗𝐗; 𝜃𝜃), 𝑉𝑉𝑆𝑆 ≈ 𝑉𝑉𝑆𝑆 (𝐗𝐗; 𝜃𝜃),

𝑄𝑄𝑃𝑃 ≈ �̂�𝑄𝑃𝑃 (𝐗𝐗; 𝜃𝜃), 𝑄𝑄𝑆𝑆 ≈ �̂�𝑄𝑆𝑆 (𝐗𝐗; 𝜃𝜃),
 (5)

where 𝐴𝐴 𝐴𝐴 = [𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4] .

With these equations, the loss function can be defined.

3.2. Loss Function and DNN Training

The loss function can be defined as MSE:

𝐿𝐿1 =
𝑀𝑀
∑

𝑖𝑖=1

|𝑉𝑉𝑃𝑃 𝑃𝑖𝑖 − 𝑉𝑉𝑃𝑃 𝑃𝑖𝑖(𝐗𝐗; 𝜃𝜃)|
2
+

𝑀𝑀
∑

𝑖𝑖=1

|𝑉𝑉𝑆𝑆𝑃𝑖𝑖 − 𝑉𝑉𝑆𝑆𝑃𝑖𝑖(𝐗𝐗; 𝜃𝜃)|
2
𝑃 (6)

where VP,i and VS,i are the ith data point of wave velocities from logs as the 
ground truth, and M is the number of data points used for training. The qual-
ity factor is not incorporated in Equation 6 since there is no available real 
data. In most cases, the more information, that is, constraints, can be added 
to the loss function, the more likely the learned model will approach the 
reality. However, most ML algorithms are sensitive to the errors and noises 
of the data.

Figure 4. Sensitivity curves by a well-trained DNN model: (a and b) respectively show the sensitivity of VP and VS to each 
input quantity. The abscissa X ' represents each normalized quantity.

Well Attribute

Method in Section 2 Method in Section 3

Relative RMSE r2 Relative RMSE r2

W1 VP 0.4831% 99.64% 1.649% 95.77%

VS 0.4498% 99.78% 1.910% 96.04%

W2 VP 0.2432% 99.88% 1.713% 94.34%

VS 0.2540% 99.92% 1.288% 97.92%

W3 VP 0.3840% 99.79% 1.836% 95.22%

VS 0.3737% 99.85% 2.298% 92.28%

W4 VP 0.2656% 99.78% 1.273% 94.87%

VS 0.2599% 99.86% 1.212% 97.07%

W5 VP 0.4992% 99.33% 1.805% 91.24%

VS 0.4611% 99.66% 1.911% 94.20%

Table 1 
The Precision of Predictions by the Two Methods Validated on the Test Set
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Meanwhile, physical constraints need to be added into the training process to assure that the learned model is 
consistent with the real data and physics. According to Biot's theory, the following constraints are proposed: 

𝐴𝐴 |�̂�𝐴| > |�̂�𝑄| > |�̂�𝑅| > 0 , based on the definitions of the coefficients. The loss function with physical constraints can 
be written as:

𝐿𝐿2 =
𝑀𝑀
∑

𝑖𝑖=1

|ReLU(|�̂�𝑄| − |�̂�𝐴|)|
2
+

𝑀𝑀
∑

𝑖𝑖=1

|ReLU(|�̂�𝑅| − |�̂�𝐴|)|
2
+

𝑀𝑀
∑

𝑖𝑖=1

|ReLU(|�̂�𝑅| − |�̂�𝑄|)|
2
, (7)

where ReLU is the activation function with the full name of rectified linear unit. The Softplus function is used in 
the output layer to ensure its positivity.

Consequently, the total loss function is defined as:

Loss = 𝜆𝜆1𝐿𝐿1 + 𝜆𝜆2𝐿𝐿2, (8)

where λ1 and λ2 are weight factors, which we set to 1.

The design of the DNN is similar to that of Section 2. A fully connected NN is used here, with five hidden 
layers, each layer with 50 units. The Adam optimizer is used and ReLU is selected as the activation function. 
Input normalization and label denormalization are not needed. The DNN models are trained simultaneously by 
minimizing the total loss function. The training and test sets are the same as in Section 2. Only after testing can 
the practicability be proved.

The workflow of the method presented in this section is summarized as follows. First, the density constants (ρ11, 
ρ12, and ρ22) and dissipation coefficient (b) of Equation 3 are computed according to Biot's theory. Second, the 
DNN are fed with 𝐴𝐴 �̃�𝐗 to predict the elastic constants (A, N, Q, and R). Once a preliminary prediction is achieved, 
wave velocities (VP and VS) are computed by Equations A3 and A4. Then the loss function of data mismatch be-
tween predictions and the given log data along with the constraints can be formulated. Then follows the train of 
the DNN models and the updating to minimize the loss function.

4. Results and Discussions
We consider examples to test the methods presented in Sections 2 and 3. Two indicators for evaluating the preci-
sion of the DNN models are given. By taking VP as an example, the first one is the root MSE:

RMSE =

√

√

√

√
1
𝑀𝑀

𝑀𝑀
∑

𝑖𝑖=1

(𝑉𝑉𝑃𝑃 𝑃𝑖𝑖 − 𝑉𝑉𝑃𝑃 𝑃𝑖𝑖)
2
𝑃 (9)

where 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃 is the ground truth of data point i, 𝐴𝐴 𝑉𝑉𝑃𝑃𝑃𝑃𝑃 is the prediction by the DNN model, and M is the number of data 
points used to test here. In an actual application, it is usually divided by the mean value of VP to get the relative 
RMSE.

The other indicator is the so-called coefficient of determination:

𝑟𝑟2 = 1 −
𝑀𝑀
∑

𝑖𝑖=1

(𝑉𝑉𝑃𝑃 𝑃𝑖𝑖 − 𝑉𝑉𝑃𝑃 𝑃𝑖𝑖)
2
∕

𝑀𝑀
∑

𝑖𝑖=1

(𝑉𝑉𝑃𝑃 𝑃𝑖𝑖 − 𝑉𝑉𝑃𝑃 𝑃𝑖𝑖)
2𝑃 (10)

where 𝐴𝐴 𝑉𝑉𝑃𝑃𝑃𝑃𝑃 =
∑𝑀𝑀

𝑃𝑃=1 𝑉𝑉𝑃𝑃 𝑃𝑃𝑃∕𝑀𝑀 . The closer the prediction from the DNN model is to the ground truth, the closer r2 is 
to one.

4.1. Results With the DNN-Based Surrogate Model

A DNN model that serves as a surrogate one to match the relationship between 𝐴𝐴 𝐗𝐗 and 𝐴𝐴 𝐘𝐘 is trained. Data normali-
zation is performed before training and then the data is scaled back to the normal range after training. Data of five 
wells are selected as test set. The loss values in the process of training are shown in Figure 3. The whole test set 
is taken as the validation set. As can be seen, the training and test loss decrease and converge to a low value after 
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6,000 epochs. The final test loss is the same as the convergence value of the training loss, which indicates that no 
overfitting occurs and the generalization capability of the trained DNN model can be guaranteed. High precision 
of predictions on the test set is obtained with relative RMSEs for predictions of VP and VS equal to 0.4325% and 
0.4407%, and the corresponding r2 values are 99.12% and 99.51%, respectively.

The sensitivity of VP and VS to each component of 𝐴𝐴 𝐗𝐗 is investigated. The sensitivity curves are shown in Figure 4, 
where 𝐴𝐴 𝐴𝐴′ denotes each normalized component of the training set, and χP and χS are computed by using the well-
trained DNN model according to Equation 2. Figure 4a shows that the bulk modulus K (green curve) is the most 
sensitive property to VP, that is, a small variation of K may cause a significant change in VP. The shear modulus 
μ also affects VP.

The influence of porosity ϕ and permeability κ on VP is significant only when it is very small. The trends of the 
two curves are consistent, indicating that there is a correlation. The effect of density ρ is more significant than κ 
and Sw in general. It should be noted that ϕ may be the most important parameter since K, μ, and κ are dependent 
on ϕ. The effect of ϕ is also included in the three quantities. By comparison, the water saturation Sw is the least 
sensitive.

Unlike the P wave, as can be seen in Figure 4b, μ affects more VS as expected. K is also affected, due to the effect 
of porosity ϕ. The sensitivity curves of the other quantities are similar to Figure 4a. From the perspective of 

Figure 5. Mean and standard deviation of VP from 15 DNN-based surrogate models. Predictions are validated on test data from W1 to W5. The black solid curves 
represent the ground truth, the red dashed curves are the mean predictions from 15 different DNN initializations, and the gray shadow represents the standard deviations 
as a degree of uncertainty.
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multivariate functions, the influence of each variable on the dependent variables is obtained according to the sen-
sitivity analysis. It suggests that the insensitive quantities can be neglected to achieve a dimensionality reduction 
in establishing the wave-propagation model. Regarding the log data, the sensitivity analysis shows that Sw and κ 
have a weak influence on VP and VS. Therefore, data points that lack these two parameters will still be used for 
testing, where a mean value can be taken. In this way, the number of test data points increases.

Next, we analyze the effect of the DNN initialization, as an uncertainty quantification of the DNN-based surro-
gate method, on the precisions of VP and VS. In this example, the 15 DNN models with different initializations 
but identical hyper parameters as described in Section 2 are trained. Specifically, the weights of the DNN models 
are initialized by feeding random values from the standard normal distribution. As a result, 15 well-trained DNN 
models are obtained and then validated by the five wells (denoted as W1–W5). For each input, mean values of 
outputs from these DNN models are calculated as predictions, and the standard deviation (STD) is obtained 
simultaneously.

Table 1 gives the precision of the prediction for each well. As can be seen the DNN results match well the ground 
truth. Figures 5 and 6 show the predictions with STDs for VP and VS from W1 to W5, respectively. The gray 
shadow shows degrees of prediction uncertainty, where the larger the STD, the higher the uncertainty. Overall, 
the trained DNN models perform well on the five wells, suggesting that the surrogate model is determined 

Figure 6. Mean and standard deviation of VS from 15 DNN-based surrogate models. Predictions are validated on test data from W1 to W5. The black solid curves 
represent the ground truth, the red dashed curves are the mean predictions from 15 different DNN initializations, and the gray shadow represents the standard deviations 
as a degree of uncertainty.
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successfully. It means that wave velocity prediction with a high precision can be achieved when the rock-physics 
parameters are obtained.

Note that the STDs of data points with a high precision are small, while the uncertainty is high for the test data 
such as the data points from depths of 1,980 to 1,990 m in W1 (where a relatively poor prediction is given as 
shown in Figure 5). There is a correlation between the prediction errors and the STDs. Furthermore, Figure 7 
gives the scatter plot of RMSE vs. STD of all the test data. It is shown that most of the VP- and VS-related points 
overlap, and the prediction precision of VP is slightly lower than that of VS. There is some correlation between 
them, which can be approximated with a straight line. On the other hand, for both VP and VS, the mean STD is 20 
times smaller than their mean value, indicating that the effect of the DNN initialization on the prediction of VP 
and VS is small, and each DNN model can output high-precision predictions.

4.2. Results With Data-Driven Design of Wave Equations

The aforementioned examples show the DNN-based surrogate model established with log data. Predictions of 
VP and VS with a high precision can be obtained once six input quantities are fed into the well-trained DNN 
models. However, such a model can only be used to link the rock-physics parameters with VP and VS, but further 
information other than these quantities cannot be obtained. For instance, the quality factor cannot be inferred and 
wavefield simulation cannot be performed. Here, DNN models are trained to predict the four elastic constants to 
match VP and VS. In this way, the wave equations for shale-oil reservoirs are obtained by feeding 𝐴𝐴 �̃�𝐗 into the well-
trained DNN models to get these four constants, along with others coefficients which are determined according 
to Biot's theory.

Similar to the previous examples, 15 DNN models with different initializations are trained here, and the mean 
value of predictions of the learned wave equations based on the plane-wave analysis is taken as the result. See 
Table 1 for the precision. Although it is slightly lower than the previous method, the DNN-predicted results match 
well with the ground truth in general. Figures 8 and 9 show the predicted results and the STDs for VP and VS, 
respectively. The learned wave equations achieve high precision predictions on the data from wells W1 to W5.

Figure 7. Scatter plot of the root mean squared error (RMSE) vs. the standard deviation (STD) of data from wells W1 to W5 
based on DNN-based surrogate models. The black solid line represents the fitting according to the linear regression method.
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In addition, it is shown that there is a certain correlation between the prediction error and the uncertainty. For 
example, as shown in Figure 8, the STD value corresponding to the data of well W1 at depths around 1,850 m, 
is relatively large where the prediction is poor. Figure 10 gives the scatter plot of the RMSE vs. STD of all the 
test data. Most of the data points are concentrated in an area, indicating that there is a correlation between RMSE 
and STD. The prediction precision of VP is almost the same as that of VS but with a relatively higher uncertainty. 
Similar to Figure 7, the mean STD is 20 times smaller than the mean value for VP and VS, which indicates that the 
effect of the DNN initialization on the prediction of VP and VS is small.

In the examples, the wave velocities are used for training, while the quality factors of P and S waves can be pre-
dicted from Equation A4 without any other further information since the wave equations are obtained. However, 
the prediction cannot be tested since there is no measurement available. In order to explore if the learned wave 
equations can predict the unknown quantities under the condition of limited and zero S wave labels are available 
in training, a special example is given here to investigate whether VS can be predicted correctly. Here, the data of 
VP is used entirely in the process of DNN training, while different VS values are used to train the DNN models 
whose outputs are the elastic coefficients of the wave equations.

Table 2 lists the precisions of predictions of VP and VS by the learned wave equations in the cases that five and 
no values of VS are used. Compared with Table 1, the precisions of VP and VS decreases, which is not surprising 

Figure 8. Mean and standard deviation of VP from 15 learned wave equations. Predictions are validated on test data from wells W1 to W5. The black solid curves 
represent the ground truth, the red dashed curves are the mean predicted results from 15 learned wave equations, where the DNN training includes 15 initializations, 
and the gray shadow represents the standard deviation as a degree of uncertainty.
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since the constraints on the DNN model are less. The precision of VP is lower than that of the previous examples. 
Note that VS is only related to the constant μ as can be seen in Equation A3, while VP is affected by the four elastic 
constants. The fewer labels are given, the lower the prediction precisions of the four constants. Figure 11 shows 
the predictions for VP and VS for two special cases, in which data from wells W1 to W5 are used, respectively. It 
can be seen that the learned wave equations still successfully predict VP and VS, indicated as prediction 1 (blue 
dashed curve) in the case that five values of VS are used for training. In the case of zero values (prediction 2, red 
dashed curve), although the precision is greatly reduced, the errors of the relative RMSE are less than 5%, which 
may be considered acceptable.

This example shows the advantages of the second method, that is, more physical quantities can be obtained once 
the wave equations are learned from data. Specifically, a relatively ideal prediction can be obtained even in case 
of zero values (labels). On the other hand, once the label of a quantity is available, even for a few points, the 
prediction precision can be improved.

Finally, the results are compared with those predicted by the classical rock physics model. The Xu andWhite (1995) 
one is used to predict VS. This model assumes that the geometry of the pores of the sandy part is significantly 
different from that of clays and shales. The Kuster and Toksöz (1974) and differential-effective-medium theories 

Figure 9. Mean and standard deviation of VS from 15 learned wave equations. Predictions are validated on test data from wells W1 to W5. The black solid curves 
represent the ground truth, the red dashed curves are the mean predicted results from 15 learned wave equations where the DNN training include 15 initializations, and 
the gray shadow represents the standard deviation as a degree of uncertainty.
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are employed to compute the dry-rock bulk and shear moduli. Then, the wet-rock bulk modulus Ksat is determined 
by using the Gassmann equation (Gassmann, 1951). The wave velocities are determined as:

�� =
√

(

�sat +
4
3
�sat

)

∕�, (11)

𝑉𝑉𝑆𝑆 =
√

𝜇𝜇𝑑𝑑∕𝜌𝜌𝜌 (12)

where μd is the shear modulus of the dry rock.

The porosity, clay content, and the density of rock needed in modeling 
are taken from well-log data. The bulk moduli of sand and clay's matrix 
are taken as 37 and 21  GPa, respectively, and the corresponding shear 
moduli are 44 and 7 GPa, respectively. The bulk moduli of water and oil 
are taken as 2.25 and 1.02 GPa, respectively. Other parameters of fluids 
are taken as the same values as the aforementioned analysis. The aspect 
ratio of sand-related pores is taken as 0.12. VS can be predicted by using 
Equation 12.

Figure 12 shows the results for VS, compared to those of the Xu-White mod-
el. For wells W1 and W3, there is a relatively good agreement between the 
curves, while the Xu-White model predicts lower velocities for wells W4 and 
W5. The relative error of these predictions for each well is higher than 5%. It 
shows that this classical rock-physics model may find it difficult to estimate 
the wave velocities of the shale reservoirs. Moreover, the rock-physics model 
mainly predicts the wave velocities, and ML can obtain more information. It 
is shown in Figure 9 that high precision results can be obtained according to 
the second ML-based method.

Figure 10. Scatter plot of RMSE vs. STD of data from wells W1 to W5 based on data-driven building of wave equations. 
The black solid line represents the fitting according to the linear regression method.

Well Attribute

Training with five values of VS Training without VS

Relative 
RMSE r2

Relative 
RMSE r2

W1 VP 2.179% 92.60% 1.462% 96.67%

VS 1.672% 96.97% 3.284% 88.30%

W2 VP 1.530% 95.49% 2.001% 92.22%

VS 1.208% 98.17% 2.640% 91.28%

W3 VP 2.613% 90.32% 1.538% 96.65%

VS 2.044% 95.41% 4.220% 80.46%

W4 VP 1.360% 94.14% 1.942% 88.05%

VS 1.220% 97.04% 2.828% 84.08%

W5 VP 2.220% 86.75% 1.909% 90.20%

VS 1.602% 95.92% 3.355% 82.12%

Table 2 
Precisions of Wave Equations Learned in the Case of Five and Zero Values 
of VS
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4.3. Generalizability of the Proposed Method

To further show the general aspects of the proposed method, log data from a carbonate reservoir is selected to 
train the networks. The data is from the Shunbei Oilfield, Tarim Basin, China. Among them, 2,534 data points 
include porosity ϕ, rock density ρ, P wave velocity VP and S wave velocity VS. The bulk and shear moduli K and 
μ can be obtained based on the wave velocities. In addition, the density, bulk modulus, and viscosity of the fluid 
are determined with Batzle-Wang equations (Batzle & Wang, 1992) according to the in situ temperature and 
pressure. The average permeability is 1.703 mD. In fact, the parameters of fluid do not affect the accuracy of the 
results since constant values are used.

Figure 13 compares the true values with the ML predictions, where 25% of data with 634 points of VP and VS 
are selected as training set and the whole data as test set. It can be seen that the match is satisfactory. The overall 
accuracy is high with relative RMSE for VP and VS of 1.90% and 1.66%, and corresponding r2 values of 96.66% 
and 95.87%, respectively, indicating that a good accuracy can be obtained with relatively fewer training data. This 
example also shows that the wave-propagation phenomenon corresponding to these log data can be described 
with Equation 3 as long as the elastic constants are determined properly.

Similar to Figure 11, an example is given to investigate whether ML can predict VS accurately under the condition 
of limited and zero labels. Figure 14 shows the results by using different training sets. In Figures 14a and 14b, 
25% of VP with 634 points are used, but only five points of VS are selected randomly. The overall accuracy is high 

Figure 11. Predictions of VP and VS by ML, validated on data from wells W1 to W5. The black solid curves are the ground truth, and the blue (prediction 1) and red 
(prediction 2) dashed curves represent the case of five and zero values of VS used in the process of DNN training.
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enough with relative RMSE of VP and VS of 2.28% and 1.58% and r2 values of 95.54% and 94.96%, respectively. 
On the other hand, in Figures 14c and 14d, only 80% of VP with 2,028 points are used, without VS. As can be seen 
that the precision is smaller, although it may be considered acceptable with relative RMSE of VP and VS of 1.81% 
and 3.46% and r2 values of 96.98% and 82.13%, respectively. Another case, trained only with 25% of VP without 
VS, is omitted since the precision is not good.

The previous examples are mainly focused on a shale reservoir, while the examples in this subsection show the 
proposed method can accurately be used for carbonate reservoirs. These examples show that wave equations 
based on ML can yield high precision and general applicability.

5. Conclusions
Two DNN-based methods for designing wave propagation models are proposed. Unlike the classical models, 
well-log data is required for training. In the first method, the trained DNNs serve as surrogate models to approx-
imate the relation between the rock-physics properties and the seismic attributes. The second method makes use 

Figure 12. Comparison of VS obtained with different methods, corresponding to wells W1–W5. The black solid curves represent the ground truth, and the red and 
green dashed curves the ML predictions and Xu-White model, respectively.
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of the wave equation (PDEs) and measurements to train the DNNs, to obtain 
the unknown elastic constants of the stress-strain relation. Large training 
data are needed to ensure the applicability of the methods. The two methods 
are tested on the data of shale reservoirs and both methods achieve good re-
sults. From the point of view of precision, models based on ML have higher 
accuracy than classical models. The second method has the advantage that 
additional physical information such as wavefield can be obtained even if 
some information is not used in the DNN training, which makes full use of 
the learned model. In addition, tests are performed on the carbonate rocks 
by using the second method, showing a good performance. Future research 
based on the second method needs to be performed to investigate if the form 
of the wave equations can also be obtained from the machine-learning algo-
rithms other than the coefficients of the PDEs. Moreover, including attenu-
ation other properties such as viscosity and permeability could be predicted. 
This can be done by assuming complex and frequency-dependent the coef-
ficients in Biot equation to effectively describe squirt-flow and mesoscopic 
dissipation.

Appendix A: Biot's Theory
According to Biot's theory (Biot,  1956a,  1962), the density constants 
of Equation  3 are 𝐴𝐴 𝐴𝐴12 = [1 − 𝛼𝛼(1 + 1∕𝜙𝜙)]𝜙𝜙𝐴𝐴𝑓𝑓 , 𝐴𝐴 𝐴𝐴11 = (1 − 𝜙𝜙)𝐴𝐴𝑠𝑠 − 𝐴𝐴12 
and 𝐴𝐴 𝐴𝐴22 = 𝜙𝜙𝐴𝐴𝑓𝑓 − 𝐴𝐴12 , where ρs and ρf are the densities of the solid and 
fluid, respectively, and α  =  0.5. ρs is inferred from the bulk densi-
ty 𝐴𝐴 𝐴𝐴 = (1 − 𝜙𝜙)𝐴𝐴𝑠𝑠 + 𝜙𝜙𝐴𝐴𝑓𝑓 = (1 − 𝜙𝜙)𝐴𝐴𝑠𝑠 + 𝜙𝜙𝐴𝐴𝑓𝑓 . The dissipation coefficient 
b = ηϕ2/κ, where η is the viscosity of the fluid.

For the case of porous media saturated with two fluids, the effective-fluid 
theory (Carcione et al., 2006) is used to estimate the properties of the mixture 
as:

⎧

⎪

⎨

⎪

⎩

�� = ����1 + (1 − ��)��2,

� = �1(�2∕�1)�� ,

 
(A1)

where ρf1 and ρf2 are 1 g/cm3 (water) and 0.75 g/m3 (oil), respectively, and 
η1 and η2 are 1 mPa·s and 1.44 mPa·s for shale oil reservoir, respectively (Fu 
et al., 2020).

In Biot's theory, the expressions of the four elastic constants are given as 
follows (Biot, 1956a, 1962):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁𝑁 = 𝜇𝜇𝜇

𝐴𝐴 =
(1 − 𝜙𝜙)(1 − 𝜙𝜙 −𝐾𝐾𝑏𝑏∕𝐾𝐾𝑠𝑠)𝐾𝐾𝑠𝑠 + 𝜙𝜙𝐾𝐾𝑏𝑏𝐾𝐾𝑠𝑠∕𝐾𝐾𝑓𝑓

1 − 𝜙𝜙 −𝐾𝐾𝑏𝑏∕𝐾𝐾𝑠𝑠 + 𝜙𝜙𝐾𝐾𝑠𝑠∕𝐾𝐾𝑓𝑓
− 2

3
𝑁𝑁𝜇

𝑄𝑄 =
(1 − 𝜙𝜙 −𝐾𝐾𝑏𝑏∕𝐾𝐾𝑠𝑠)𝜙𝜙𝐾𝐾𝑠𝑠

1 − 𝜙𝜙 −𝐾𝐾𝑏𝑏∕𝐾𝐾𝑠𝑠 + 𝜙𝜙𝐾𝐾𝑠𝑠∕𝐾𝐾𝑓𝑓
𝜇

𝑅𝑅 =
𝜙𝜙2𝐾𝐾𝑠𝑠

1 − 𝜙𝜙 −𝐾𝐾𝑏𝑏∕𝐾𝐾𝑠𝑠 + 𝜙𝜙𝐾𝐾𝑠𝑠∕𝐾𝐾𝑓𝑓
𝜇

 (A2)

Figure 13. Predictions of VP and VS by ML, validated with the whole data 
set. The black solid curves are the ground truth, and the red dashed curves 
represent the case of 25% of VP and VS used in the process of DNN training.
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where Kf is the bulk modulus of the fluid. The meaning of other symbols is the same as above. Instead of using 
Equation A2, as can be seen in Section 3, this study proposes to predict them by deep neural networks in reality. 
Once the required basic rock-physics parameters are given, a plane-wave analysis (Carcione, 2014) is used to 
solve the wave Equation 3, giving:

�1

(�
�

)4
+�2

(�
�

)2
+�3 = 0,

�1

(�
�

)2
−�4 = 0,

 (A3)

with

�11 = �11 +
√

−1 ⋅ �∕�, �11 = � + 2�, �12 = �21 = �12 −
√

−1 ⋅ �∕�,

�12 = �21 = �, �22 = �22 +
√

−1 ⋅ �∕�, �22 = �,

�1 = �11�22 − �12�21, �2 = �12�21 + �21�12 − �11�22 − �22�11, �3 = �11�22 − �12�21, �4 = ��22.
 

Figure 14. VP and VS predicted by ML, validated with the whole data set. The black solid curves are the ground truth, and the 
red dashed curves represent ML predictions for the two cases: trained with 25% of VP and five points of VS in (a and b), and 
trained with 80% of VP and no VS in (c and d).
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where ω is the angular frequency and k is the complex wave number. P and S solutions are obtained from the 
first and second equations, respectively. The phase velocity and quality factor are defined as (Carcione, 2014):

� =
[

Re
( �
�

)]−1
, � =

Re(�)
2Im(�)

. (A4)

Data Availability Statement
The training and test data from log data used in this study are available online (at https://zenodo.org/depos-
it/5003019). The open source DNN python package PyTorch is used in this study.
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