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Abstract
Seismic pre-stack AVA inversion using the Zoeppritz equation and its approximations as a
forward engine yields P- and S-wave velocities and density. Due to the presence of seismic noise
and other factors, the solution to seismic inversion is generally ill-posed and it is necessary to add
constraints to regularize the algorithm. Moreover, since pre-stack inversion is a nonlinear
problem, linearized optimization algorithms may fall into false local minima. The simulated
annealing (SA) algorithm, on the other hand, is capable of finding the global optimal solution
regardless of the initial model. However, when applied to multi-parameter pre-stack inversion,
standard SA suffers from instability. Thus, a nonlinear pre-stack inversion method is proposed
based on lithology constraints. Specifically, correlations among the elastic parameters are
introduced to establish constraints based on a Bayesian framework, with special intention of
mitigating the ill-posedness of the inversion problem as well as addressing the lithological
characteristics of the formations. In particular, to improve the stability, a multivariate Gaussian
distribution of elastic parameters is incorporated into the model updating the SA algorithm. We
apply the algorithm to synthetic and field seismic data, indicating that the proposed method has a
good resolution and stability performance.
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1. Introduction

Seismic inversion can be classified into post-stack impedance and pre-stack multi-parameter inversions. Since the post-stack
class only makes use of stacked data and extracts acoustic impedance information, it is relatively useful in obtaining infor-
mation about the presence of hydrocarbons (Ghosh 2000; Liu et al. 2012). On the other hand, the pre-stack inversion takes
advantageof angle gathers that contain amplitude variationswith incident angleoroffset (AVA/AVO) theory (Aki&Richards
1980), and is able to estimate the parameter group, including P- and S-wave velocities as well as density, constituting one of
the most powerful techniques for reservoir prediction and fluid identification (Chiappa &Mazzotti 2009; Zong& Yin 2017;
Luo et al. 2019; Ba et al. 2017, 2019; Pang et al. 2019; Zhang et al. 2019; Zhao et al. 2014, 2015, 2017).

Various optimization algorithms have been introduced to solve the pre-stack inversion. Although linearized optimiza-
tion algorithms, such as the damped least squares (Marquardt 1963) and conjugate gradient (Bae et al. 2012) methods,
are robust and highly efficient, they may fall into local minima. Since pre-stack inversion is highly nonlinear, other methods
such as genetic algorithms (Mallick 1992), particle swarm optimization (Shaw & Srivastava 2007; Yuan et al. 2009) and the
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multi-mutation differential evolution algorithm (Gao et al. 2016) have been employed. In particular, simulated annealing
(SA), a commonly used nonlinear inversion algorithm, was initially developed by Kirkpatrick et al. (1983). Rothman (1986)
first used the SA algorithm to the problem of residual static corrections. Then, Yao (1995) improved the computational
efficiency of SA by using fuzzy prior information to determine the minimum temperature and modify the cost function.
Endowed with fast cooling speed and high efficiency, fast simulated annealing (FSA) (Szu & Hartley 1987), which is a
variant of SA, has been widely used in seismic inversion (Misra & Sacchi 2008; Guo et al. 2018). In FSA, the updating
of the model parameters is a key factor of the algorithm. However, pre-stack seismic inversion is a multi-parameter inver-
sion problem, leading to instability of multiple inversion results. The instability can be caused by the update in the con-
ventional FSA, and a subspace method may overcome this issue (Wang & Houseman 1994, 1995; Wang 2003; Liu &
Wang 2020).

Noises and inadequacy of observed data cause the ill-posed solution to pre-stack inversion (Tarantola 2012). By introduc-
ing a regularization technique (Tikhonov & Arsenin 1977), i.e. adding constraints into objective function, the ill-posedness
can bemitigated and stability can be achieved (Li&Peng 2017; Li&Zhang 2017). Zhang et al. (2013) combined generalized
linear AVO inversion with Bayesian theory, and introduced a three-variable Cauchy distribution to constrain the inversion.
Specifically, the approaches that add prior constraints into the objective function based on the Bayesian framework seem to
work quite well. Among them, the joint probability distribution is effective (Downton & Ursenbach 2006; Alemie & Sacchi
2011), by which multiple parameters are correlated and stabilized based on statistics, i.e. expectation and covariance. How-
ever, these attributes are usually the same for all the layers in standard approaches (Downton & Ursenbach 2006), without
considering the discrepancies due to lithology.

We address the two problemsmentioned above, by implementing a nonlinear three-parameter pre-stack seismic inversion
method based on lithology constraints. Specifically, different prior terms (expectations and covariances) are used for different
lithologies in the objective function. Moreover, the multivariate Gaussian probability distribution is incorporated into the
model update of the FSA.

The paper is arranged as follows. First, a model is introduced and the objective function is based on lithology constraints.
Then, the FSA algorithm, aided by a multivariate probability distribution is proposed, including a discussion of the model
update. Finally, the method is tested with synthetic and log data, and applied to field data.

2. Methodology

2.1. AVA forward modeling

To estimate elastic parametersmore accurately, the reflection coefficients of P-waves can be calculated by the exact Zoeppritz
equation as (Aki & Richards 1980)
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where VP and VS represent the longitudinal and shear wave velocities, 𝜌 denotes bulk density, 𝜃1 denotes the angle of
P-wave incidences, 𝜑1 is the reflected angle of converted waves and 𝜃2 and 𝜑2 denote the refracted angles of the P- and
S-transmissions, respectively. The subscripts 1 and 2 represent the upper and lower layers, respectively. Snell’s law expresses
the horizontal slowness p as

sin𝜃1
VP1

=
sin𝜃2
VP2

=
sin𝜑1

VS1
=

sin𝜑2

VS2
= p. (2)

2.2. The objective function

Under the assumption that subsurface rock consists of a series of lateral layers attributed by discretized elastic (model) param-
eters, z, the seismic responses can be simulated based on the convolutional model, in which the observed data are obtained
by convolving the reflectivity series rwith the source wavelet w, i.e. (Alemie & Sacchi 2011; Aleardi & Salusti 2019),

dobs = r(z, 𝜃) ∗ w + e, (3)

where z denote the elastic parameters that represent the properties of subsurface rock; for the three-parameter pre-stack
inversion problem, z consists of the discretized VP, VS and 𝜌; 𝜃 denotes the incidence angle of the P-wave; r(z, 𝜃) denotes
the reflection coefficient of the P-wave, which is a function of z and 𝜃 according to equation (1); e denotes the noise resulting
frommeasurement errors and ‘*’ denotes the convolution operator.

Compared with post-stack inversion, the elastic-parameter groups, e.g. P-wave velocity, S-wave velocity, density and Pois-
son’s ratio, P-wave impedance, density, etc., can be simultaneously estimated through inversion technique from pre-stack
angle gathers. However, inversion by using pre-stack datasets is an ill-posed problem due to instabilities and multimodal so-
lutions. By introducing prior information based on a Bayesian framework (Buland &Omre 2003; Kjønsberg et al. 2010), we
can mitigate the ill-posed problem. The posterior probability of the model parameters Prob(m | dobs) is

Prob(m|dobs) = Prob(dobs|m)Prob(m)
Prob(dobs)

∝ Prob(dobs|m)Prob(m) , (4)

where Prob(dobs) denotes the marginal distribution of the observed data and it is a constant value given the known observed
gathersdobs; Prob(m)denotes thepriori informationonm, which canbe assigned asprior information for theunknownmodel
parameters to be inverted and Prob(dobs | m), the likelihood function, corresponds to the forward relationship connecting
observations and model parameters.

Actually, Prob(dobs |m) represents the similarity between the responses of simulated and observed data during inversion
process. Assuming that the noise e follows a zero-meanGaussian distribution and is independent ofm, the likelihood function
is expressed as

Prob (dobs|m) = 1√
2𝜋𝜎e

exp
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−

‖‖‖‖ dobsScad
−

r(m, 𝜃) ∗ w
Scar

‖‖‖‖
2

2𝜎2
e

⎤⎥⎥⎥⎥⎦
,

Scad =
1
M

M∑
i=1

||di||, Scar = 1
M

M∑
i=1

||(r ∗ w)i||,
(5)

where 𝜎e
2 denotes the variance of noise, and Scad and Scar are scale factors, which reflect the magnitudes of the mea-

sured amplitude and the synthesized amplitude, respectively. Given the large amount of observed data, computational
efficiency is important for a nonlinear inversion algorithm. Both the forward (modeled) response and observed data
represent the relative amplitude of the seismic response, so it is necessary to normalize the modeled response and ob-
served data in each iteration. However, standard normalization approaches usually have low efficiency. Here, the nor-
malization is realized by dividing the (modeled and observed) amplitudes by the corresponding scale factors (i.e. the
mean value of single-channel sampling points) in the likelihood function, which is also intended to improve the forward
efficiency.

In Bayesian theory, prior information is often used to constrain inversion process, making the obtained posterior proba-
bility closer to the real result. Different prior distributions can produce different constraint effects. In the actual inversion, the
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distribution ofmodel parameters is considered to beGaussian distribution in accordance with the general law of signal distri-
bution. SinceVP,VS and 𝜌 are statistically correlated by log data (Gardner et al. 1974; Todoeschuck et al. 1990; Greenberg &
Castagna 1992), we add a prior term to stabilize the multi-parameter inversion. Based on the bivariate Gaussian probability
function, the prior term takes the form of (Downton &Ursenbach 2006)

Prob(m) = 1

(2𝜋 ||Cm
||) N

2

exp
[
−1
2
(m − m)TC−1

m (m − m)
]
, (6)

wherem andCm denote the prior mean value (expectation) and the covariancematrix ofm, respectively, andN is the dimen-
sion ofm.

By combining equations (5) and (6), the posterior probability is
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As for the problem of minimizing the corresponding negative logarithmic posteriori ofmaximum a posteriori (MAP) esti-
mation ofm, the objective function has the following expression:

m̂ = argmin
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−
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⎤⎥⎥⎥⎥⎦
. (8)

2.3. Lithology-dependent prior constraints

For a three-parameter pre-stack inversion, the covariance matrix Cm in the prior constraints is a [3× 3] matrix (Downton &
Ursenbach 2006), which takes the form

Cm =
⎡⎢⎢⎣
𝜎2
Vp 𝜎VpVs 𝜎𝜌Vp

𝜎VpVs 𝜎2
Vs 𝜎𝜌Vs

𝜎𝜌Vp 𝜎𝜌Vs 𝜎2
𝜌

⎤⎥⎥⎦ ,
where the diagonal elements are the variances of VP, VS and 𝜌, and the nondiagonal elements are the covariances, which
describe the statistical correlation ofVP andVS,VP and 𝜌, as well asVS and 𝜌. Therefore, the prior term, based onmultivariate
Gaussian distribution is

Prob(m) = 1
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]⎫⎪⎬⎪⎭ . (9)

Actually, the statistical characteristic of the elastic parameters is for different lithologies. If the same Cm is used for all
the layers, the inversion results are erroneous. Therefore, we propose lithology-dependent prior constraints, i.e. differentCm
values are extracted from logging data and used to formulate the prior term of the specific formation.

The multilayer-model properties are shown in Table 1, from which the first three layers (L1–L3) illustrate the different
prior probability distributions for the lithologies, with different mean values and covariances of the elastic parameters. The
sampling rate of the model is 1 ms. Figure 1a shows the prior probability of the multivariate Gaussian distribution of VP
and VS (equation (6)) of all the layers (without considering the lithological differences) and figure 1 parts b–d show the
prior probability of VP and VS for each lithology. Figure 1a indicates that the distributions of all the layers lies between 2500
and 4500 m s−1 and 1200 and 2700 m s−1, respectively, and the Gaussian ellipse is flat and nearly strip-shaped, indicating
the P-wave velocity has a very strong correlation with the S-wave velocity. Compared with figure 1b–d, the statistics are
quite different and the different shape of the Gaussian ellipse also indicates that the statistical relationships between VP and
VS are quite different. Thus, prior lithological constraints should be used to better represent the statistical properties of the
subsurface properties.
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Table 1. Elastic parameters of a multilayer model.

Layers Lithology VP (m s−1) VS (m s−1) Density (kg m−3) Thickness (ms)

L1 Shale 4000 2213 2527.2 25
L2 Sand 3300 1797 2267.0 5
L3 Gas–sand 2500 1154 2108.5 10
L4 Shale 4000 2213 2527.2 20
L5 Sand 3300 1797 2267.0 18
L6 Shale 4000 2213 2527.2 20

Figure 1. Multivariate Gaussian distribution prior probability of VP and VS for all layers (a), the shale layer (b), sandstone layer (c) and gas–sand
layer (d).

3. Simulated annealing

3.1. Conventional FSA

The goal of the inversion problem is to minimize the objective function or maximize the posterior probability distribution.
Therefore, to obtain the estimation of the model parameters, an optimization algorithm is usually employed to achieve the
minimization. Derived from the principle of solid annealing that simulates the state of solid from melting to crystallization,
the SA algorithm is a commonly used nonlinear optimization algorithm (Sen& Stoffa 1991). As a variant of SA, FAS has the
advantage of fast convergence and improvedmodel updating, making it widely applied in practical inversions (Mosegaard &
Vestergaard 1991).

Different from conventional SA, the acceptance probability of a new solution in FSA obeys a Cauchy-like distribution
(Alemie & Sacchi 2011), in which the tail of the distribution is flat and wide, indicating that the probability of accepting
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large-scale disturbance is large and it is likely to avoid a local minimum. The new solution is (Szu &Hartley 1987):

m(k+1) = m(k) + T(k) ⋅ sign (𝜂 − 0.5) ⋅
[(

1 + 1
T(k)

)|2𝜂−1|
− 1
]
⋅ Δm, (10)

wherem(k) denotes the current value andm(k+1) denotes the updated value ofm; 𝜂 denotes a random number in the range of
0 and 1;�m denotes the search range ofm, and sign(.) denotes the sign function. In particular, the generation of new solution
is controlled by the temperature T, which is gradually annealing based on the cooling schedule.

In each iteration of the optimization algorithm, the worse solution still has a chance to be accepted when the cost function
value increases, so as to prevent the solution from falling into local minima, and a model update so that the cost function
decreases is also accepted (Alemie & Sacchi 2011). The acceptance probability P of the updated value is

Pacceptance =
[
1 − (1 − t) ⋅ ΔE

T(k)

]1∕(1−t)
, (11)

where�E denotes the energy variation between the objective function values after the update, and t is a constant value.
The cooling schedule has a great influence on the convergence and efficiency of the conventional fast simulated an-

nealing. The exponential annealing method rapidly cools down in the early iterations, and slowly cools down in the
later iterations, finally ensuring global convergence. The cooling equation is expressed by (Geman & Geman 1993;
Triki et al. 2005):

T(k) = T(0) exp(−ck1∕N), (12)

where T(k)denotes the current temperature that begins with the initial temperature T(0), and c is the damping factor, which
is a constant value.

3.2. FSA based on multivariate Gaussian distribution

The three-parameter pre-stack inversion attempts to invert VP, VS and 𝜌 simultaneously. Therefore, the parameter pertur-
bation (update) in FSA involves multiple parameters. In the conventional FSA algorithm, the three parameters are usually
perturbed at the same time according to equation (10), which causes instabilities. Liang et al. (2017) proposed to improve
the using relationships among the three parameters. Specifically, the P-wave velocity is perturbed first, then the S-wave veloc-
ity is evaluated based on a constant P- to S-wave velocity ratio, and density is obtained by the generalized Gardner equation
(Gardner et al. 1974) in the parameter perturbation. To achieve a better agreement with the statistical characteristics of the
actual formation elastic parameters, a multi-parameter perturbation approach that combines multiple probability density
functions is proposed here.

We start with the 2D probability density function (multivariate Gaussian distribution function) of VP and VS:

Prob(m) = 1
2𝜋 ||Cm

|| exp
{

−1
2

[
Vp − Vp, Vs − Vs

]T[ 𝜎2
Vp 𝜎VpVs

𝜎VpVs 𝜎2
Vs

]−1 [
Vp − Vp, Vs − Vs

]}
. (13)

The correlation coefficient q is introduced to expand the covariance matrix and equation (13) can be rearranged as

Prob(Vp, Vs) = 1
2𝜋𝜎Vp𝜎Vs

√
1 − q2

exp

{
− 1
2(1 − q2)

[
(Vp − Vp)

2

𝜎2
Vp

− 2q
(Vp − Vp)(Vs − Vs)

𝜎Vp𝜎Vs
+

(Vs − Vs)
2

𝜎2
Vs

]}
,

(14)
where VP and VS denote the mean values of VP and VS, respectively, and q= 𝜎VpVs/𝜎Vp𝜎Vs.

VP is updated according to equation (10) as

V (k+1)
p = Vp

(k) + T(k) ⋅ sign (𝜂 − 0.5) ⋅
[(

1 + 1
T(k)

)|2𝜂−1|
− 1
]
⋅ ΔVp. (15)

In standard FSA, VP, VS and density are usually perturbed simultaneously, according to equation (10), leading to insta-
bility when generating new solutions. To illustrate the proposed model perturbation, we take figure 2 as an example. When
VP is specified, a 1D Gaussian (normal) distribution of VS can be obtained from the 2D Gaussian distribution of VP – VS.
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Figure 2. 1DGaussian distribution of Vs given Vp (5000 m s−1).

Substituting the new value of VP into the 2D probability density function P (VP, VS), and assuming VP – VP = V, equation
(13) can be rewritten as

P (Vs|Vp) = 1
2𝜋𝜎Vp𝜎Vs

√
1 − q2

exp

{
− 1
2(1 − q2)

[
V2

𝜎2
Vp

− 2q
V(Vs − Vs)
𝜎Vp𝜎Vs

+
(Vs − Vs)

2

𝜎2
Vs

]}
,

= 1
2𝜋𝜎Vp𝜎Vs

√
1 − q2

exp
⎧⎪⎨⎪⎩−

1
2(1 − q2)

⎡⎢⎢⎣
𝜎2
VsV

2 − 2q𝜎Vp𝜎VsV ⋅ Vs + 2q𝜎Vp𝜎VsVVS + 𝜎2
Vp ⋅ Vs

2 − 2𝜎2
VpVS ⋅ Vs + 𝜎2

VpVS
2

𝜎2
Vp𝜎

2
Vs

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ ,

= 1
2𝜋𝜎Vp𝜎Vs

√
1 − q2

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1
2(1 − q2)

⎡⎢⎢⎢⎢⎢⎢⎣

(
𝜎Vs

𝜎Vp

)2

V2 −

(
q
𝜎Vs

𝜎Vp

)2

V2

𝜎2
Vs

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

[
Vs −

(
q
𝜎Vs

𝜎Vp
V + VS

)]2
2(1 − q2)𝜎2

Vs

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Omitting the constant term, the 1DGaussian distribution of VS (given VP) can be obtained as

P(Vs|Vp) = constant ⋅ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

[
Vs −

(
q
𝜎Vs

𝜎Vp
V + VS

)]2
2(1 − q2)𝜎2

Vs

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (16)

Therefore, when VP is specified, equation (16) turns out to be the 1D Gaussian distribution of VS with the expectation
(mus) and variance (vas), which can be obtained as

mus = q
𝜎Vs

𝜎Vp
V + VS,

vas =
√
(1 − q2)𝜎Vs.

(17)
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Figure 3. The multilayer model listed in Table 1 and the corresponding angle gather.

By combiningmus and vas with equation (10), a newmode disturbance of VS combined with the multivariate probability
distribution can be obtained as follows:

V (k+1)
s = mu(k)s + T(k) ⋅ sign (𝜂 − 0.5) ⋅

[(
1 + 1

T(k)

)|2𝜂−1|
− 1
]
⋅ va(k)s . (18)

Similarly, the new value VP is introduced into the 2D probability density function P (VP, 𝜌):

P
(
𝜌|Vp
)
= 1

2𝜋 ||Cm
|| exp

{
−1
2

[
Vp − Vp, 𝜌 − 𝜌

]T[ 𝜎2
Vp 𝜎Vp𝜌

𝜎𝜌Vp 𝜎2
𝜌

]−1 [
Vp − Vp, 𝜌 − 𝜌

]}
. (19)

When VP is specified, equation (19) is also a 1D Gauss distribution of 𝜌. The expectation of P (𝜌 | VP) is mu𝜌 and the
variance is va𝜌. By combining these two values with equation (10), the mode updating of 𝜌, combined with a multivariate
probability distribution, can be obtained as

𝜌(k+1) = mu(k)
𝜌

+ T(k) ⋅ sign (𝜂 − 0.5) ⋅
[(

1 + 1
T(k)

)|2𝜂−1|
− 1
]
⋅ va(k)

𝜌
. (20)

The proposed update method of the three-parameter (referred as to multivariate probability FSA hereafter) is based on a
multivariate probability distribution, in which the statistical correlation of multi-parameters is effectively incorporated into
the FSA algorithm. The synthetic data test verifies the method in the next section.
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Figure 4. Results for VP, VS and 𝜌 by conventional FSA algorithm without prior constraints.

Figure 5. Results for VP, VS and 𝜌 by multivariate probability FSA algorithm with uniform covariance.

4. Testing with synthetic and log data

4.1. Synthetic data

The multilayer model listed in Table 1 is employed again to verify the proposed inversion method. Table 1 shows the mean
values of elastic parameters for each lithologic layer, and±5% of the mean value is taken as the variance of elastic parameters
of each layer. The pre-stack angle gather profile generated from this multilayer model is shown in figure 3.

Three sets of inversion test are performed, whose results are shown in figures 4–6. Figure 4 shows the three-parameter re-
sults by conventional FSAwithout anyprior terms in theobjective function.Theupdateof theVP,VS and𝜌 follows fromequa-
tion (10). It can be seen that the accuracy of is poor and the results are unstable, since the discrepancies with the true model
are large. Figure 5 shows results by multivariate probability FSA. The prior term is introduced in the objective function with
uniform covariance (extracted from all the layers). The update the of S-wave velocity and density follows from equations
(18) and (20). It can be seen that the accuracy is better than before, since the discrepancies are smaller. Figure 6 shows by the
proposed method, which is based on lithology-dependent prior terms and multivariate probability FSA. The update of the
S-wave velocity and density follows from equations (18) and (20). The accuracy and resolution are higher than those shown
in figures 4 and 5, especially the density.

To test the robustness of the proposed method, white Gaussian noises are added to the synthesized data. Figure 7 shows
the seismic data with noises, of which signal-to-noise (S/N) ratio is 20 dB. Figure 8 shows the three-parameter inversion
results by the method. The result accuracy is high and stable, indicating the acceptable stability of the method.
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Figure 6. Results for VP, VS and 𝜌 by multivariate probability FSA algorithm with lithology-dependent prior constraints.

Figure 7. Pre-stack seismic data with an S/N= 20.

Figure 8. Results (for S/N= 20) for VP, VS and 𝜌 by the multivariate probability FSA algorithm with lithology-dependent prior constraints.
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Figure 9. Log data of VP, Vs and density inWell #1.

Figure 10. (a) VP–VS, (b) VP–densitymultivariate Gaussian distribution prior probability for all the layers.

Through the synthetic data tests, the multivariate probability FSA based on lithology-dependent prior constraints shows
higher stability and accuracy. Next, real log data is used to gain further confidence in the proposed method.

4.2. Log data

In order to verify the algorithm, real well-log data (Well #1) from an area in the northern part of South China Sea is selected.
The elastic-parameter model of the target layer from Well #1 is shown in figure 9. This layer is divided into three forma-
tions. From top to bottom, there aremudstone, limestone and sandstone formations. Based on a lithological profile, the prior
probability of VP–Vs and VP–𝜌(den) 2DGaussian distributions can be obtained.

Figure 10 shows theVP–VS andVP–densitymultivariate Gaussian distribution prior probability for the whole model. The
Gaussian ellipse shows that the statistical distribution ranges for theVP,VS anddensity are2500–5500, 1000–3000and2200–
2600 kg m−3, with the mean values of 3700 m s−1 , 2300 m s−1 and 2450 kg m−3, respectively. Figures 12–14 show the prior
probability of the multivariate Gaussian distribution for different lithologies. It can be seen that the statistical distribution
ranges and mean values of the elastic parameters for different lithologies are quite different from those of the whole model,
and the shapes of the Gaussian ellipse are different, which indicates that lithology-dependent prior constraints can better
represent the statistical properties of the different formations.

Figures 11 and 15 show the inversion results of the angle gather alongWell #1, which is based on uniform prior constraints
and lithology-dependent prior constraints, respectively. In figures 11 and 15, the updated equations of VP, VS and density
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Figure 11. Results (red) by multivariate probability FSA based on uniform prior constraint compared with the well-log curves (blue).

Figure 12. (a) VP–VS, (b) VP–densitymultivariate Gaussian distribution prior probability for the mudstone layer.

Figure 13. (a) VP–VS, (b) VP–densitymultivariate Gaussian distribution prior probability for the limestone layer.
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Figure 14. (a) VP–VS, (b) VP–densitymultivariate Gaussian distribution prior probability for the sandstone layer.

Figure 15. Results (red) by multivariate probability FSA based on lithology-dependent prior constraints compared with the well-log curves (blue).

are equations (15), (18) and (20), respectively. It can be seen that using uniform prior constraints, the result is unstable and
different from the log curves (figure 11). In particular, the actual oil-gas-bearing layer is the middle limestone layer, whose
resolution is not high. In contrast, the results based on lithology-dependent prior constraints (figure 15) are more stable and
more consistent with the logging profiles, especially for the density.With the intention to further validate the effectiveness of
the proposed method, a field data is used in the next section.

5. Field-data test

The field data was acquired at the northern part of the South China Sea, from which a seismic line was selected for the test
(the stacked section is shown in figure 16). There is one well (Well #2) in the study area which is located at the 121st CDP.
The line has 212CDPs, each of which has 11 traces with angle range of 3–36°, interval of 3° and sampling rate of 0.002 s. The
target zone is identified and its top and bottom interfaces are depicted by dotted lines in figure 16, involving three groups of
formations; i.e. mudstone (top layer), limestone (the target layer) and sandstone (bottom layer).

Three sets of inversion tests are designed here, andweuse the initialmodelwith a low frequency trend (established accord-
ing to the background velocities). Correlation coefficient between the pre-stack seismic angle gathers synthesized with the
initial model and the actual seismic data is 0.4. In particular, the model update in the proposed multivariate probability FSA
is compared with the conventional approach in Liang et al. (2017). Figure 17 shows the results without any prior constraints,
where the update of the P-wave velocity is based on equation (10). According to well-log data, the correlation of the three
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Figure 16. Stacked seismic section.

Figure 17. VP (a), VS (b) and 𝜌 (c) obtained without any prior constraints.
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Figure 18. VP (a), VS (b) and 𝜌 (c) obtained with the multivariate probability FSA with uniform prior constraints.

parameters is analyzed, and relationships between the velocities and/or density are derived. The S-wave velocity and density
update is in agreement with Liang et al. (2017),

Vs
(k+1) = 0.3428 ∗ Vp

(k+1) + 368.69 + T(k) ⋅ sign (𝜂 − 0.5) ⋅
[(

1 + 1
T(k)

)|2𝜂−1|
− 1
]
⋅ ΔVs.

𝜌(k+1) = 0.0445 ∗ Vp
(k+1) + 2245.1 + T(k) ⋅ sign (𝜂 − 0.5) ⋅

[(
1 + 1

T(k)

)|2𝜂−1|
− 1
]
⋅ Δ𝜌.

(21)

where Vp
k+1 is the updated value.

Figures 18 and 19 show the results by the multivariate probability FSA with uniform prior constraints and lithology-
dependent prior constraints, respectively. The lithology-dependent constraints were estimated from the data of Well #2 and
the model update of the three parameters is based on equations (15), (18) and (20). Figures 20–22 compare the three sets
of results (shown in figures 17–19) with the well-log curves inWell #2.

The comparison of the three sets of results is shown in figures 17–19 and the comparison with the well-log curves in
figures 20–22. The results without any prior constraints are generally the worst, since velocities roughly reflect the formation
structure, and are not consistent with the trends of the well-log profiles (figure 20). Specifically, the limestone layer with
high P-wave velocity in the middle can be identified, but the horizontal continuity is poor as the interfaces along the top and
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Figure 19. VP (a), VS (b) and 𝜌 (c) obtained with the multivariate probability FSA with lithology-dependent prior constraints.

Figure 20. Comparison of the results in CDP121 shown in figure 17 with the well-log profiles of VP, VS and 𝜌 in Well #2.

bottom of the middle limestone are discontinuous. Moreover, the density does not follow the formation structure very well,
and shows a poor agreement with the log curve. The results obtained with the multivariate probability FSA (figure 18) with
uniform prior constraints are better, but those of the lithology-dependent prior constraints (figure 19) are the best. However,
in certain intervals, such as between 1775 and 1790ms in figure 22, the results show some anomalies, which may come from
a cumulative error caused by the stochastic algorithm.
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Figure 21. Comparison of the results in CDP121 shown in figure 18 with the well-log profiles of VP, VS and 𝜌 in Well #2.

Figure 22. Comparison of the results in CDP121 shown in figure 19 with the well-log profiles of VP, VS and 𝜌 in Well #2.

6. Conclusions

We propose a three-parameter pre-stack seismic inversion method using lithology-dependent prior constraints of the objec-
tive function based on a Bayesian approach. It is shown that these constraints can better represent the statistical properties
of the different lithologies, and the results have a high accuracy and stability. The method uses a multivariate Gaussian dis-
tribution of model parameters, and the problem is solved with fast simulated annealing. Compared with the conventional
approach, the new method effectively improves the stability of the multi-parameter inversion. Tests with synthetic, logging
data and 2D field data verify the resolution of the algorithm.
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