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Key Points:  14 

 We study how fluid rheology and pore connectivity affect the permeability of 15 

pore networks.  16 

 Fluid rheology has a significant effect on permeability. Peaks are observed on 17 

permeability-frequency curves for a Maxwell fluid.  18 

 Pore-network connectivity plays a key role, since the pore radius and mean 19 

coordination number lead to permeability variations for the same porosity. 20 
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Abstract 30 

Permeability is an important rock property in exploration geophysics. Darcy’s law 31 

assumes a steady-state regime and constant permeability. However, recent studies 32 

showed that the effects of fluid viscosity and pore geometry on permeability cannot be 33 

neglected. We consider a Maxwell fluid in a 3D pore network subject to harmonic 34 

oscillations. The network is based on the Voronoi method, which provides a realistic 35 

connectivity. The permeability of polyethylene oxide (PEO) and cetylpyridinium 36 

chloride and sodium salicylate solution (CPyCl/NaSal) have been simulated. The 37 

results show that permeability is constant at frequencies less than several kHz, and 38 

rapidly decreases to extremely low values as frequency tends to infinite. In addition, we 39 

find that fluid mainly flows in sparse-large pore networks at low frequencies and in 40 

dense-small pore networks at high frequencies. The Maxwell fluid shows significant 41 

permeability peaks related to the mean coordination number (MCN), indicating that 42 

there exists an optimal network connectivity at which fluid flow is maximum. These 43 

results have been central to understand how fluid flows in natural reservoir rocks. The 44 

permeability variations versus frequency, fluid rheology and pore connectivity, provide 45 

key information of reservoir fluid properties and pore network structure. The results 46 

indicate that it is questionable whether Darcy static permeability can be applied at high 47 

frequencies.  48 

1. Introduction 49 

Permeability is an intrinsic property of rocks, characterizing fluid flow in porous media 50 

(Carman, 1956; Darcy, 1856; Hazen, 1892; Whitaker, 1986), and it is a key property in 51 

groundwater flow, hydrocarbon production and CO2 storage activities (Backeberg et 52 

al., 2017; Carman, 1956; Darcy, 1856; Hazen, 1892; Jang & Santamarina, 2014; Li et 53 

al., 2018; Neuzil, 1986; Qin et al., 2018; Teige et al., 2006; Whitaker, 1986). Empirical 54 

and semi-empirical relations exist between permeability and micro-structural 55 

properties and rock constituents (Alyamani & Sen, 1993; Carcione et al., 2019; Kenney 56 

et al., 1984; Kozeny, 1927; Terzaghi & Peck, 1964). Darcy’s law describes the 57 

steady-state fluid flow through a macroscale porous system. In this case, permeability 58 

is assumed constant as a function of frequency. In a natural rock, the pore space 59 

structure is complex, containing a large number of fluid-solid interface discontinuities. 60 

Adams and Williamson (1923) suggested that flaws close under pressure in rocks. 61 

Walsh (1965) pointed out that spherical pores do not close, even with a very high 62 

confining pressure, but cracks close under increased confining pressure. Permeability 63 

has a non-linear dependency on pore pressure (Walsh & Brace, 1984). The tortuosity, a 64 

commonly used quantity describing the pore connectivity and diffusion path curvature 65 

in porous media, changes with pressure. There is a “dynamic pathway” for fluid flow 66 

under an oscillating pressure. As a consequence, permeability is expected to depend on 67 

frequency.   68 

A theoretical expression of dynamic permeability has been developed based on a 69 

tortuosity model in fluid-saturated media (Johnson et al., 1987; Smeulders et al., 1992). 70 



 

 

In such a theory, the flow is dominated by viscous forces in the low frequency range, 71 

while inertial forces are more important at high frequencies. These works confirmed 72 

that this semi-phenomenological model can describe the behavior of elastic waves at 73 

the low- and high-frequency limits. For intermediate frequencies, the model provides a 74 

reasonable approximation. The lattice Boltzmann method (LBM) has been used to 75 

calculate the dynamic permeability of a Newtonian fluid in porous media (Pazdniakou 76 

& Adler, 2013). The dynamic response of non-Newtonian fluids in tubes revealed an 77 

enhancement of the mean flow rate (De Haro et al., 1996; del Río et al., 1998; Tsiklauri 78 

& Beresnev, 2001). The flow of a Maxwell fluid in a bundle of capillary tubes has been 79 

analyzed by the method of volume averaging (De Haro et al., 1996).  80 

The standard treatment of dynamic permeability and its frequency dependence assumes 81 

a non-deformable material saturated with an incompressible fluid (Charlaix et al., 1988; 82 

Johnson et al., 1987; Zhou & Sheng, 1989). In this case, there is no pore pressure wave 83 

propagating through the medium (i.e., the Biot slow wave). The fluid flows back and 84 

forth in the entire pore space in unison, that is, all fluid particles have the same phase. 85 

Biot (1956a; b) formulated the theory of wave propagation in a porous medium filled 86 

with a compressible viscous fluid. However, the attenuation is caused by the overall 87 

drag force depending on the fluid velocity field relative to that of the skeleton. It has 88 

been pointed out that fluid velocity gradients are not considered in Biot theory (Sahay, 89 

2008). Hence, the dynamic permeability equations assumed an incompressible fluid 90 

and rigid pores, leading to viscosity-dominated and inertia-dominated regimes 91 

separated by the Biot characteristic frequency. If the fluid is compressible or the solid 92 

phase is deformable, a fluid pressure wave propagates with transmission/reflection at 93 

every branching point, leading to wave interference (Bernabé, 2009a; b; Zamir, 1998; 94 

2000). Actually, the fluid would not move in phase (Zamir, 2000). Fluid-flow waves 95 

propagate in deformable tubes, or even in rigid pipes saturated by a compressible fluid. 96 

Recent laboratory observations confirmed that the rigid-tube assumption holds for steel 97 

tubes containing water and air (Kurzeja et al., 2016), but for silicone tubes filled with 98 

air, a wave mode can only be explained in the framework of Bernabé’s model (Bernabé, 99 

2009a), including the compressibility of the frame (Kurzeja et al., 2016).  100 

In rocks, fluid flow occurs in pore-crack networks, rather than in a single tube or tube 101 

bundle. Networks provide a realistic model to describe the pore space configuration. A 102 

2D network model has been developed to predict a static permeability in sandstones 103 

(Seeburger & Nur, 1984). Modeling in sandstone and granite indicated that a network 104 

model predicts permeability as a function of confining pressure. On the other hand, 105 

Bernabé (2009a) studied the pulsatile flow and the related wave propagation in 106 

complex networks. The transport properties of a Newtonian fluid in a steady-state 107 

regime have been numerically simulated through regular networks consisting of pipes 108 

(Bernabé, 1995). Bernabé (2009a) obtained the hydraulic conductivities and wave 109 

dispersion equation in rigid and elastic pipe networks saturated with a Newtonian fluid 110 

under periodic oscillations. Moreover, he obtained frequency-dependent hydraulic 111 

conductivities in a network with varying pipe length and radius. These works lay a 112 

foundation for the prediction of permeability of porous media saturated with complex 113 

fluids.  114 



 

 

In addition to pore connectivity, the fluid properties play an important role. 115 

Experimental measurements of the dynamic permeability reported a rollover from a 116 

constant value at low frequencies (0.1 Hz to 1 kHz) to a 1/ω dependence at high 117 

frequencies (Charlaix et al., 1988). It is believed that there exists a transition from a 118 

viscous flow regime to an inertial one as frequency increases. The permeability due to 119 

viscoelastic fluids is frequency-dependent, and evidences have been provided by 120 

laboratory data (Castrejon-Pita et al., 2003; Mena et al., 1979). Fluid rheology is a 121 

significant property controlling permeability. Oil often exhibits significant 122 

non-Newtonian behavior in a natural reservoir. The resistance of shear stress 123 

corresponding to porous structure deformation is closely related to fluid elasticity and 124 

viscosity. However, the mechanism for viscous dissipation due to the interaction of the 125 

complex fluid (Maxwell fluid, etc.) and the matrix remains poorly understood. Several 126 

studies have introduced complex fluid effects into the classical Biot theory (De Haro et 127 

al., 1996; Tsiklauri, 2002; Tsiklauri & Beresnev, 2001). Cui et al. (2010) stated that the 128 

dynamic permeability in non-Newtonian (Maxwell) fluid-saturated porous media 129 

depends on the Deborah number, which is a parameter characterizing the viscoelastic 130 

behavior of the pore fluid. The real part of the permeability increases at frequencies 131 

where the imaginary part changes sign (De Haro et al., 1996).  132 

This study first focuses on fluid flow in a single pipe (as a throat in the network) subject 133 

to an oscillating pressure based on Bernabé (2009a). The difference is that a Maxwell 134 

fluid is used here, which is modelled as series combination of a dashpot and a spring. 135 

This fluid is viscoelastic, i.e., it does not obey the classical Hooke elasticity law and 136 

Newton viscosity law, which leads to a distinct permeability behavior. Then, we 137 

propose a method to predict the frequency-dependent permeability in a 3D random pore 138 

network, which is a realistic model for rocks. The network connectivity is characterized 139 

by its mean coordination number. The permeability-frequency curves are obtained for 140 

regular and random networks saturated with Newtonian and Maxwell fluids. Then, we 141 

study the different dynamic behaviors and frequency-dependent permeability of the 142 

two types of fluids. The permeability in this study is not the classical one, i.e., the 143 

Darcy permeability in the static state regime, but a dynamic permeability in the 144 

context of Biot theory.  145 

2. Maxwell fluid flow in a 3D pore network  146 

First, the frequency-dependent dynamic permeability is obtained under an oscillating 147 

pressure. Second, random networks are generated consisting of pipes with complex 148 

connectivity based on a Voronoi diagram. Then, we propose a method to calculate 149 

permeability.  150 

2.1. Flow in a pore throat  151 

We consider an infinitely long cylindrical pipe with a rigid solid wall, which can be 152 

regarded as a throat in the pore-throat connecting system. The pipe is filled with a 153 

Maxwell fluid of density ρf. Fluid velocity is v and p is the fluid pressure. The mass 154 

conservation equation is   155 
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and the equation of motion of the fluid is  157 
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where τ is the stress tensor in the fluid and p  is the pressure gradient. The expression 159 

of τ varies for different types of fluid. Here, we adopt the Maxwell constitutive 160 

equation:  161 

vγττ    ,                           (3) 162 

where λ=η/G is the relaxation time, G is the shear modulus at high frequencies and η is 163 

the fluid viscosity. When G is very large (e.g., 10
15

 Pa), λ becomes very small and 164 

equation (3) approaches a Newtonian fluid model.  165 

By taking the divergence on both sides of equation (3) and combining it with equation 166 

(2), we obtain the momentum conservation equation:  167 
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Equations (1) and (4) are the governing equations of fluid flow in the pore network. In a 169 

cylindrical coordinate system (r, θ, z), the fluid velocity has no angular dependence 170 

because of symmetry. The velocity vector is  Tvu,v , where  tzruu ,,  and 171 

 tzrvv ,,  are the axial and radial components, respectively.  172 

The compressibility of the fluid is   pff   1 . Equations (1) and (4) can be 173 

simplified under the assumption of long wavelengths (Bernabé, 2009a). Assuming that 174 

the wave propagates in the z-direction, u, v and p have the form of 175 

     cztrUtzru  e,, ,      czterVtzrv /,,     and      czterPtzrp /,,   , where c is the 176 

wave speed and  = 1  is the imaginary number. Substituting these expressions into 177 

equation (4), we have 178 
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. We solve the system of ordinary differential equations 180 

with the boundary condition     0 RVRU   in the long-wave approximation, and 181 

derive the following solutions:  182 
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where A and B are undetermined coefficients, J0 and J1 are Bessel functions of zero and 184 

first orders, respectively, and   BrP  . Under the non-slip boundary condition, i.e., 185 

    0 RVRU , we get two equations to solve for A and B. The determinant related to 186 

the two equations must be zero for any given ω. The dispersion equation of the flow 187 

wave in the pipe is 188 
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where 
0c  is the sound speed in the fluid. Meanwhile, we get the expression of  rU , and 190 

the relation between B and the pressure gradient is PcB   (Bernabé, 2009a), and 191 

thus we get   RcJBA f  0/ . Therefore, the flux expression can be derived by 192 

integrating the axial velocity component over the pipe section, to obtain 193 
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Then, we consider a pipe with a finite length L, and that the pressures at both ends of the 195 

pipe are 
ji PP , . The permeability of a single pipe saturated with the Maxwell fluid is (see 196 

Appendix):  197 
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where S is the cross-section area.  199 

2.2. Pore-network building method 200 

The permeability of a representative element volume (REV) (cube with side length h) is 201 

calculated for two types of networks: regular and random networks with simple and 202 

complex connectivities.  203 



 

 

For simplicity, the regular networks are composed of interconnected and vertical 204 

cylindrical pipes with the same length L and radius R. In the cubic REV, the number of 205 

network nodes (denoted as m) is equal along the three spatial coordinates, and we have 206 

a side length  1h m L  . The porosity of the pore network is 
pipe netV V  , where 

pipeV  207 

is the total pore space volume, i.e., the volume of a single pipe multiplied by the number 208 

of pipes, 
netV is the volume of the REV containing network and 3

netV h . If the porosity 209 

and the side length of the REV are given, the length and radius of each pipe are related, 210 

i.e., the radius can be calculated if the length is known according to the definition of 211 

porosity. In this model, each pipe corresponds to a throat in the rock, and there are no 212 

additional pores.  213 

The network space of actual reservoir rocks often contains complex connections. In 214 

order to model the porous structure of a real rock, we consider a random network based 215 

on a Voronoi cell filling method in a 3D cubic space.  216 

 217 

 218 

Figure 1.  Equivalent random network with pore-throat structure. The color from blue 219 

to red indicates a transition from small to large size/radius of the pore/throat. 220 

The pore network consists of two components: spherical pores and cylindrical pore 221 

throats. The network reconfiguration consists of three steps: (1) Arrange points 222 

randomly in the space, and then take these points as the center of mineral particles 223 

(spheres), where the radius of the sphere is taken as a random value according to a rock 224 

slice statistical distribution; (2) Take each random point (the center of a sphere) as a 225 

reference point, then divide the space into different units by using the 3D Voronoi 226 

diagram generation method; (3) Take the vertex of each Voronoi cell as a spherical pore, 227 

with the radius of the pore space being proportional to the mean volume of the Voronoi 228 

cells near the vertex. The line between vertices is the throat. The pore throat radius is 229 

proportional to the cross section area cutting the side. Thus, a 3D pore-throat network is 230 

constructed as shown in Figure 1.  231 

The pore-throat network constructed with this method is a simplified equivalent model 232 

of the pore structure of a real rock. Although in natural rocks the pore space is highly 233 

complex, the fluid flow problem in the pore-throat network model is important because 234 



 

 

it is amenable to analytical description and it contains much of the physics of the 235 

pulsatile wave propagation state.  236 

We analyze the effect of the pore-throat network on permeability. One fundamental 237 

parameter to describe the internal pore-throat structure is the mean coordination 238 

number (MCN). MCN is the mean connection number to each pore in the network. In 239 

3D regular networks, the MCN of each pore is z = 6. However, in real porous rocks, the 240 

MCN has a distribution from 1 to 16 (Øren & Bakke, 2003). In this work, we 241 

investigate the behavior of permeability as a function of the MCN. It is straightforward 242 

to calculate the MCN when the pore-throat network is constructed. The connections to 243 

neighboring pores are summed as coordination numbers and the MCN is obtained by 244 

averaging over all the pores.  245 

For each random network, the permeability is determined by solving a set of flux 246 

conservation equations at every node. In order to avoid randomness effects of a pore 247 

network, the calculation is repeated over 50 network samples. The permeability as a 248 

function of the MCN is calculated for different frequencies from 10 Hz to 100 kHz. 249 

Interestingly, the significance of the MCN depends on frequency. At low frequency 250 

(around 10 Hz), we observe a high permeability in networks with low MCN, i.e., large 251 

and sparse pores. At high frequency (from 10 kHz to 100 kHz), high permeability 252 

occurs in networks with high MCN, i.e., small and dense pores. The results clearly 253 

demonstrate that large and sparse pores with low connectivity dominate the flow at low 254 

frequencies. On the contrary, small and dense pores with high connectivity dominate at 255 

high frequencies. 256 

2.3. Permeability calculation  257 

In solving a flow problem in a pipe network, the mass conservation at node i  will lead 258 

to a set of linear equations. The solutions depend on the pressures at related nodes and 259 

network connectivity. The frequency-dependent permeability in a given 3D network is 260 

obtained numerically based on the following process.  261 

1. If pore i  is connected to pore j  ( Jj ) by a pore throat, the flux  
jii PPQ ,  at node 262 

i  is a function of pressures 
iP  and 

jP  at node i  and j . Here J  is a set containing 263 

all indices of the pores connected to pore i . In the case of a linear model, we have 264 

jijiiji PdPcQ  . Here, the coefficients 
ijij dc ,  depend on the throat length and radius 265 

(Appendix). For each pore i in the network, the fluid flux at i  is conserved, i.e., the 266 

sum of the inlet flux equals to the sum of the outlet flux   0
Jj

jii PPQ ， . Every two 267 

connected nodes can make up a pipe, and the flux in this pipe is calculated from 268 

equation (8). Therefore, the mass conversation equations for each node i  yield a set of 269 

linear equations which have pore pressures as unknowns,  270 
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or briefly 0EP  . For the pores at the inlet and outlet, the pressure values are set as 272 

boundary conditions. For pores on surfaces other than the inlet/outlet, periodic 273 

boundary conditions are applied. 274 

The coefficient matrix E described above is obtained as follows. For an arbitrary 275 

network, let N and Γ denote the total number of nodes and the connection matrix whose 276 

elements are made of 0 or 1, NNRΓ . The value of the matrix element 277 

Njiij ,,2,1, ，  is specified according to the connectivity. We have 1ij  if pore i  278 

has a connection with pore j , otherwise, 0ij . Nodes are not connected to 279 

themselves, i.e., 0ii . It is easy to show that Γ is a symmetric matrix. Consider a 280 

microscopic pipe connected by nodes i and j, and that the pressure at these nodes are pi 281 

and pj. The flux in a single pipe can be rewritten as Qi=cijpi+dijpj. We introduce the 282 

symmetric matrix C and D , where    
NNijNNij dc


 DC , , and define the two matrices 283 

C  and D , where CΓC  ， DΓD  . The matrix operation   is the product of the 284 

corresponding elements of two matrices. We can split the coefficient matrix E  into 285 

two matrices E = DE 1 , where 
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2. By solving the linear equations, we get the pressure values at every node. Then the 287 

total flux  totalQ  of the network from all the inlet pores to the outlet pores are easily 288 

calculated by summing all the outlet and inlet pore fluxes. In the form of the Darcy law, 289 

the frequency dependent permeability can be calculated by any given pressure 290 

difference between inlet and outlet as  291 

 
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
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where h is the REV side length, and P  is the pressure difference. 293 



 

 

3. Examples  294 

3.1. Influence of fluid type in a regular network 295 

The network is shown in  296 

Figure 2 and its parameters are set as follows: the number of Voronoi cells is 5×5×5, the 297 

porosity is 0.1, and the side length of the REV is 1 mm. Then, the length of each 298 

micro-tube (pipe) L = 2.5×10
-4

 m, and the radius of each micro-tube can be calculated 299 

from the porosity, giving 2.06×10
-5

 m. The length and radius are consistent with those 300 

of Oren (2003) and Okabe (2005). The permeability-frequency relation of the network 301 

is shown in Figure 3. The fluid parameters are shown in Table 1 (Sousa et al., 2017; 302 

Sung et al., 2003), where water is a Newtonian fluid, and polyethylene oxide (PEO) and 303 

cetylpyridinium chloride and sodium salicylate solution (CPyCl/NaSal) are Maxwell 304 

fluids.   305 

                           Table 1.  Fluid properties306 

   Fluid Density (kg/m
3
) Viscosity (Pa·s) Relaxation time (s) 

water 1000 0.001 0 

PEO 100 ppm 1104.5 0.0045 1.01×10
-6 

PEO 500 ppm 1105 0.006 3.9×10
-6 

CPyCl/NaSal 60 mM 1015 0.7 0.1 

CPyCl/NaSal 80 mM 1020 0.5 0.04 

 307 

 308 

Figure 2. Regular pore network with a 5×5×5 pore configuration. 309 

 310 



 

 

 311 

Figure 3. Permeability as a function of frequency for water and Maxwell fluids (PEO 312 

and CPyCl/NaSal) in a regular network.  313 

Figure 3 shows that the permeability of the network with Newtonian and Maxwell 314 

fluids have the same constant value at low frequencies (approximately 0.07 D below 1 315 

kHz). When the frequency exceeds 1 kHz the permeability decreases. The results for 316 

PEO 100 ppm and PEO 500 ppm are basically similar, and follow that of the Newtonian 317 

fluid, but show higher values at high frequencies. 318 

The results for CPyCl/NaSal 60 mM and CPyCl/NaSal 80 mM show a downward trend 319 

at high frequencies. There are a number of peaks in the permeability curves. The 320 

maximum peak value is higher than the steady-state value by more than one order of 321 

magnitude. In the case of water and PEO 100 ppm, the viscosity and relaxation time are 322 

relatively small and do not show fluctuation peaks. The permeability is constant below 323 

1 kHz.  324 

The differences occur for frequencies higher than 1 kHz, where permeability 325 

decreases. These results must be taken into account in wellbore sonic experiments 326 

where the frequency may reach 10 kHz. It has been observed in numerical simulations 327 

that this permeability decay may shift to lower frequencies when porosity varies. A 328 

detailed investigation of this effect will be performed in a future work.  329 

A viscoelastic Maxwell fluid is used, including the frequency-dependent flow 330 

enhancement and non-Newtonian effects (del Río et al., 1998; Tsiklauri & Beresnev, 331 

2001). Experiments on viscoelastic fluid dynamics have confirmed the fluctuation 332 

peaks under oscillating pressure (Castrejon-Pita et al., 2003). Here, we predict the fluid 333 

velocity by a theoretical method and compare it with the experiments. From Equation 334 

(6), the axial velocity component is     cBrAJrU f /0  , where   RcJBA f  0/  and 335 

PcB  . The mean velocity is obtained via the integration 336 
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The fluid parameters are the same as in the experiment (Castrejon-Pita et al., 2003). For 338 

CPyCL/NaSal (Maxwell fluid), ρf=1050 kg/m
3
, η=60 Pa·s, and a relaxation time λ=1.9 339 

s. The pipe radius is 25 mm and the length is 50 cm. The oscillation pressure is created 340 

by a piston movement at frequencies between 1.5 and 16 Hz.  341 

 342 

Figure 4. Predicted (dashed line) and experimental (open circles) velocities of 343 

CPyCL/NaSal in a transparent cylinder under oscillating pressure at frequencies from 344 

1.5 to 16 Hz. A Maxwell fluid flowing in a pipe under an oscillating pressure is 345 

assumed.  346 

Figure 4 shows the predicted and experimentally velocities corresponding to 347 

CPyCL/NaSal. Velocity peaks are clearly observed, indicating a resonance mechanism 348 

due to the Maxwell fluid. Although the peak heights do not match, their locations are 349 

predicted. The dynamic behavior of the Maxwell fluids is quite different from those of 350 

water. Such phenomena demonstrate that the influence of the fluid rheology on the 351 

permeability cannot be neglected.  352 

3.2. Influence of connectivity in a regular network 353 

Here, we analyze the effects of the network connectivity at constant porosity. There are 354 

two ways to get a constant porosity: (1) keep the number of pores fixed and adjust the 355 

magnitude of the radius (or the length) of each micro-tube (pipe), which is equivalent to 356 

change the size of the REV; (2) keep the size of the REV and adjust the length and 357 

radius of each micro-tube, while the porosity can be kept constant by changing the 358 

number of pores. The effects of these two choices on the results are examined below.  359 

The fluid properties are given in Table 1. The effect of the size of the REV is 360 

investigated first. We choose water as a Newtonian fluid, and PEO 100 ppm and 361 

CPyCl/NaSal 60 mM as a Maxwell fluid. The pore configuration is 11×11×11, and the 362 

porosity is 0.1. Seven sets of side lengths of the REV are used for the calculation (as 363 

shown in Table 2), and the frequencies are 100 Hz and 1 kHz. The relationship between 364 

permeability and the radius of each micro tube is shown in Error! Reference source 365 

not found., at 100 Hz and 1 kHz. There are seven points on each curve. The abscissa of 366 

each point is the radius in Table 2. The results show that permeability increases as the 367 

radius increases, because the larger the radius of the micro-tube, the easier the flow. 368 



 

 

The three curves overlap when the radius is small, and differ for larger radii. The 369 

increase of permeability of the network with water is slower than that of the Maxwell 370 

fluids. The increase corresponding to CPyCl/NaSal 60 mM is the fastest one. At 1 kHz, 371 

the results of water and PEO 100 ppm show a smooth behavior, but the permeability 372 

related to CPyCl/NaSal 60 mM has resonance peaks.  373 

Table 2.  Network parameters for different configurations 374 

Porosity Tube length (mm) Tube Radius (mm) REV side length (mm) 

0.1 

0.2
 
 1.87×10

-2
 2.0 

0.4 3.74×10
-2

 4.0 

0.6 5.62×10
-2

 6.0 

0.8 7.49×10
-2

 8.0 

1.0 9.36×10
-2

 10.0 

1.5 1.40×10
-1

 15.0 

2.0 1.87×10
-1

 20.0 

 375 

 376 

Figure 5. Permeability as a function of the radius of each micro-tube at 100 Hz and 1 377 

kHz.  378 

Next, we investigate the impact of the node configuration of the network on 379 

permeability. The side length of the REV is 1 cm, and the porosity is 0.05, 0.1 and 0.2. 380 

Seven sets of node configurations are selected for each porosity as shown in Table 3, 381 

and we consider frequencies of 100 Hz and 1 kHz.  382 



 

 

Table 3.  Network parameters for different configurations 383 

Porosity Tube length (mm) Tube radius (mm) REV node configuration 

0.1 

5.00 0.343 3×3×3 

2.50 0.206 5×5×5 

1.67 0.147 7×7×7 

1.25 0.115 9×9×9 

1.00 0.0937 11×11×11 

0.833 0.0792 13×13×13 

0.714 0.0687 15×15×15 

 384 

Figure 6. Permeability as a function of grid nodes at 100 Hz. The fluids are (a) water, 385 

(b) PEO 100 ppm, (c) CPyCl/NaSal 60 mM  386 

As shown in Figure 6, the pore numbers are the same (denoted as m) in each spatial 387 

direction, so we take m as the abscissa. Figure 6 shows the results for water, PEO 100 388 

ppm and CPyCl/NaSal 60 mM, respectively. As can be seen, permeability depends on 389 

the number of nodes, and decreases almost linearly, with different pore-network 390 

leading to quite different values.  391 



 

 

 392 

Figure 7. Permeability as a function of grid nodes at 1 kHz. The fluids are (a) water, (b) 393 

PEO 100 ppm, (c) CPyCl/NaSal 60 mM. 394 

Figure 7 shows the results at 1 kHz for water, PEO 100 ppm and CPyCl/NaSal 60 mM, 395 

respectively. The permeability at 1 kHz is nearly one order of magnitude lower that of 396 

100 Hz. The variation trend is similar for water and PEO 100 ppm. Even if the porosity 397 

and the size of the REV are fixed, variations of the pore network configuration greatly 398 

affect the permeability. A sparse configuration within the network leads to high 399 

permeability. For CPyCl/NaSal 60 mM, peaks can be observed, mainly at 1 kHz. 400 

3.3. Influence of fluid type in a random network 401 

Random pore networks better approximate the internal structure of rocks. We consider 402 

a cube with a side length of 1 mm to generate the network. The cubic space is meshed 403 

into Voronoi cells with 27- and 216-cell configurations (Figure 8), which are 404 

comparable with the lattice networks of size 3×3×3 and 6×6×6. The porosity of the 405 

sample, i.e., the volume ratio between pore/pipe network and the overall cube, is set to 406 

0.1. According to the method proposed above, we generate 145 pores for the 27-cell 407 

configuration, and 1287 pores for the 216-cell configuration. The pores within a layer 408 

(5 % the cubic side) located at x=0 are chosen as the inlet nodes, and a layer at the other 409 

side of the cube along the x-direction is the outlet (Figure 8).  410 

We consider water and CPyCl/NaSal 60 mM. The properties are given in Table 1, and 411 

the results are shown in Figure 9, where the solid and dashed lines correspond to the 412 



 

 

Newtonian (water) and non-Newtonian fluids, respectively. For both types of fluids, 413 

the permeability approaches a constant value at low frequency, indicating stationary 414 

flow. After exceeding a transition frequency (around 1 kHz), the permeability for water 415 

shows an exponential decay. The permeability for the Maxwell fluid also decreases 416 

gradually, but with a series of peaks. 417 

For the 216-cell configuration, the number of Voronoi cells filling the cube increases in 418 

the process of generating the network, and the permeability differs from that of the 419 

27-cell configuration. The permeability drops to 0.81 Darcy at the steady flow state.  420 

 421 

 422 

Figure 8. Diagram of the fluid inlet and outlet nodes in the random networks, where (a) 423 

27-cell configuration and (b) 216-cell configuration. 424 



 

 

 425 

 426 

Figure 9. Permeability as a function of frequency for different fluids and pore network 427 

configurations.  428 

                     429 

Figure 10. Mean coordination number (MCN) value z as a function of the pore number 430 

in a random network. Each circle represents the MCN for a single random network. 431 

Four types of random networks are created for Voronoi cell numbers 27, 64, 125 and 432 

216, respectively. For each type of network, 50 random network samples are used to 433 

reduce the influence of randomness. 434 

We observe that: (1) The frequency-dependent permeability for random pore networks 435 

are different for water and Maxwell fluid. The influence of fluid type on permeability 436 

cannot be ignored. (2) The pore network structures are quite different for porous media 437 

with 27-cell and 216-cell configurations, even if the porosity is the same. Then, the pore 438 

size and connectivity significantly affect the permeability.  439 

3.4. Influence of pore connectivity in a random network 440 

Finally, we study the effect of the MCN, which is a direct measure of the pore 441 

connectivity. In order to reduce the influence of the randomness of a network, 50 442 

realizations are assumed for each type of network scale. The network scale is measured 443 

though the Voronoi cell number. As the cell number increases from 27, 64, 125 to 216, 444 

the pore number pn  also increases (see horizontal axis in Figure 10) due to the short 445 



 

 

pore connectivity in networks with dense pores. For a given porosity, less pores means  446 

that the average pore volume is large and pore-pore connections are sparse, i.e., the 447 

MCN is small. On the contrary, a large number of pores increases the pore connection 448 

density in a unit volume, which leads to a smaller average pore volume and short-path 449 

pore-pore connectivity. Thus the MCN is large in such case (Figure 10). 450 

 451 

Figure 11. Permeability as a function of MCN (z value) at different frequencies for 452 

water. The open circles are numerical results and the dashed line is a fitting curve of the 453 

power model. (a) At low frequencies (10 Hz), permeability decreases as z increases 454 

from a small value (sparse-large-pore network) to large z (dense-small-pore network). 455 

(b) At intermediate frequencies (9 kHz), permeability is comparable in networks with 456 

small and large z. (c) Permeability in networks with large z (dense-small-pore network) 457 

becomes prominent as frequency increases. (d) At high frequencies (100 kHz), 458 

permeability greatly increases in networks with large z (dense-small-pore network), but 459 

the magnitude is much lower than that at low frequencies.   460 

 461 



 

 

 462 

Figure 12.  Permeability as a function of MCN (z value) at different frequencies for a 463 

Maxwell fluid. The open circles are the numerical results and the dashed line is a fitting 464 

curve of the power model (for (a)) and Gaussian model (for (b) to (d)). (a) At low 465 

frequencies (10 Hz), permeability decreases as z increases from a small value 466 

(sparse-large-pore network) to large z (dense-small-pore network). (b) At intermediate 467 

frequencies (9 kHz), permeability is comparable in networks with small and large z. 468 

Two peaks appear at MCN around 9.7 and 10.6. (c) Permeability in dense-small-pore 469 

network (large z) exceeds that of the sparse-large-pore network (small z) at 10 kHz. (d) 470 

At high frequencies (100 kHz), the permeability in dense-small-pore network becomes 471 

dominant (peak at z=10.9), but the magnitude is much lower than that at low 472 

frequencies. 473 

Comparison of the frequency-dependent permeability-MCN relationship for water and 474 

CPyCl/NaSal (60 mM) reveals that the sparse-large-pore network (small MCN) 475 

dominates at the low frequency limit (Figure 11a) while the dense-small-pore network 476 

(large MCN) dominates at the high frequency limit (Figure 11d). At intermediate 477 

frequencies (around 9 kHz), the dense-small-pore network has a comparable influence 478 

on fluid flow as the sparse-large-pore network (Figure 11c). 479 

The effects of the fluid rheology and pore connectivity are prominent (Figure 12a-d). 480 

For a Maxwell fluid, two permeability peaks occur at z=9.7 and z=10.6 at intermediate 481 

frequencies (Figure 12b). As frequency increases from 10 kHz to 100 kHz, the 482 

permeability peak related to networks with relatively small and dense pores becomes 483 

more important. The results show that for a Maxwell fluid permeability is closely 484 

related to the pore network structure (pore size, connectivity, MCN, etc.). At a given 485 

frequency, there exists an optimal pore network structure that can enhance the mobility 486 

of the pore fluid. For a given pore network structure in natural rocks, there also exists an 487 

optimal frequency at which the fluid flows more rapidly. This optimal frequency 488 

depends on rock-physics properties such as porosity and fluid rheology. A direct 489 

understanding of this observation is that at low frequencies the fluid flows in networks 490 

with large and sparse pore/fractures. At high frequencies, the Newtonian flow slows 491 



 

 

down in sparse-large-pore network, but becomes rapid in dense-small-pore network. 492 

For a Maxwell fluid, however, the change in permeability with MCN is even more 493 

dramatic. The mechanisms by which these permeability enhancements start to be 494 

understood, and many of the important details have yet to be explained.  495 

4. Conclusion 496 

We propose a 3D pore-network generation method based on the Voronoi diagram for 497 

random networks, and obtain the frequency-dependent permeability for a Newtonian 498 

(water) and Maxwell fluids. The results show that permeability is constant at low 499 

frequencies and then decreases rapidly after exceeding a critical frequency. The 500 

permeability-frequency curve related to the Maxwell fluid shows resonance peaks. 501 

Moreover, the mean coordination number characterizing the connectivity of the 502 

pore-network has significant effects on permeability. Fluid flows rapidly in 503 

sparse-large-pore network at low frequencies. At the high frequency limit, fluid flow 504 

mostly happens in dense-small-pore networks. The present analysis shows the 505 

significant effects of fluid rheology and pore connectivity on permeability. The relation 506 

between permeability and the micro-structure characteristics provides an approach to 507 

quantitatively retrieve the reservoir pore geometry and the connectivity properties from 508 

experimental measurements. Further studies should be considered to compare the 509 

modeling results with experimental data.    510 
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 623 

Appendix  624 

Let us consider a pipe of length L, that the pressure at both ends are
iP ,

jP , and the 625 

fluxes are iQ ， jQ . The total pressure in the pipe is the superposition of two plane 626 

waves propagating in opposite directions (Bernabé, 2009a):  627 

     cztczt BBtzp    ee, ,                             (A1) 628 

where 1  is the imaginary unit. In order to satisfy the initial and boundary 629 

conditions p(0,0)= iP , p(L,0)= jP  , we obtain 630 
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In the same manner, the total flow in the pipe is  632 

     cztczt QQtzq    ee, ,                   (A3) 633 

The fluxes at both ends differ, i.e., 
  QQQi and cLcL

j eQeQQ //     are not 634 

the same, forming a storage inside the pipe. If there are no sources or sinks at node i , 635 

the flow is conserved at this node. If pore i  is connected to pore j  by a throat, the 636 

flux from i  to j  can be defined as the positive direction, without loss of generality. 637 

Regarding the flow from node i  to node j  ( Jj ) by multiple pore throats, where J  638 

is a set containing all indices of the nodes connected to node i , we consider the flow 639 

conservation at node i    0
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where 
ijL and 

ijR are the length and radii of the pipe, respectively. From equation (A4),  642 

we have that the flux iQ is a combination of pressure iP and jP   643 
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Knowing the flux Q  over a pipe of length L and cross-sectional area S, as well as the 646 

pressure difference, the permeability can be derived as / ( )j iLQ S P P     by 647 

simply rearranging Darcy's law. In the case of negligible intrinsic flux storage in a 648 

throat, the permeability with a single throat saturated by the Maxwell fluid is  649 
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