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SUMMARY 

Determining rock microstructure remains challenging, since a proper rock-physics model 

is needed to establish the relation between pore microstructure and elastic and transport 

properties. We present a model to estimate pore microstructure based on porosity, 

ultrasonic velocities and permeability, assuming that the microstructure consists on 

randomly oriented stiff equant pores and penny-shaped cracks. The stiff pore and crack 

porosity varying with differential pressure is estimated from the measured total porosity 

on the basis of a dual porosity model. The aspect ratio of pores and cracks and the crack 

density as a function of differential pressure are obtained from dry-rock P- and S-wave 

velocities, by using a differential effective medium (DEM) model. These results are used 

to invert the pore radius from the matrix permeability by using a circular pore model. 

Above a crack density of 0.13, the crack radius can be estimated from permeability, and 

below that threshold, the radius is estimated from P-wave velocities, taking into account 

the wave dispersion induced by local fluid flow between pores and cracks. The approach 
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is applied to experimental data for dry and saturated Fontainebleau sandstone and 

Chelmsford Granite.  

Keywords: Microstructures; Permeability and porosity; Acoustic properties; Fracture and 

flow 

 

1 INTRODUCTION 

It is generally accepted that the physical properties of rocks are closely related to pore 

microstructure (Walsh, 1965). A precise characterization of the pore microstructure is 

critical to evaluate oil and gas reservoirs (Tang et al., 2012) and define the Earth structure 

(Rempe et al., 2018). To this purpose, direct microstructural observations were developed, 

including scanning electron microscopy (Pittman, 1971), micro X-ray CT (Spanne et al., 

1994), focused ion-beam scanning electron microscopy (Curtis M E, 2012) and confocal 

laser microscopy (Fredrich et al., 1995). These studies indicate that the pore 

microstructure affects the elastic, electrical, transport and thermal properties of rocks (e.g., 

Zhan et al., 2010; Brantut et al., 2018; Sarout et al., 2017). Although these approaches 

can provide information about the microstructure, their accuracy is constrained by the 

resolution of the imaging techniques (Zhang and Toksöz, 2012).  

To address this problem, it is essential to consider conventional experiments to 

characterize the pore microstructure, i.e., the establishment of relationships between the 

physical properties and pore microstructure. Rock-physics models consider the relation 

between pore microstructure and porosity (Shapiro, 2003), elastic properties (Walsh, 

1965; Benveniste, 1987; Le Ravalec and Guéguen, 1996; Fortin et al., 2007), electrical 

properties (Garnett, 1904, 1906; Seleznev et al., 2006), transport properties (Reiss 1980; 
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Al-Wardy and Zimmerman, 2004; Guéguen & Schubnel, 2003) and thermal conductivity 

(Pimienta et al., 2014). Moreover, many other approaches have been proposed to obtain 

the pore microstructure from elastic properties (Cheng and Toksöz, 1979; Pervukhina et 

al., 2010; David et al., 2012; Zhang et al., 2019; Cheng et al., 2020), electrical properties 

(Han, 2018b), elastic and electrical properties (Han et al., 2016a, 2018a), and elastic and 

transport properties (Sarout et al., 2017; Pimienta et al., 2017). The results show that 

these physical properties are to some extent related (Carcione et al., 2007; Han et al., 

2016b, 2018a).  

While these studies mainly focus on non-porous microcracked rocks or high porosity 

rocks, where the microstructure is relatively simple, their results show that the 

contribution of pore microstructure to physical properties can be attributed to a 

distribution of pores or cracks (Sarout et al., 2017; Pimienta et al., 2017; Brantut et al., 

2018). However, the pore microstructure is usually characterized in terms of 

characteristics size, geometry and connectivity of stiff pores and cracks (Zhang et al., 

2019). Therefore, the characterization remains challenging due to the complexity of the 

pore space and there is not a clear relationship between microstructure and physical 

properties. 

In this work, we propose a new combination of models to characterize the pore 

microstructure. We consider two rocks showing a similar dependency on pressure, 

namely Fontainebleau sandstone (Pimienta et al., 2015a, 2015b) and Chelmsford Granite 

(Coyner, 1984) and assume that the pore microstructure consists of randomly oriented 

stiff pores and cracks (Figure 1). Then, we adopt the model developed by Zhang et al. 

(2019). 
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2 THEORETICAL MODELS 

In the following sections, we discuss the relations between porosity, elastic properties, 

permeability and pore microstructure. An effective model is used to characterize the pore 

microstructure (Figure 2). 

 

2.1. Porosity and pore microstructure 

As reported in the literature (e.g., Shapiro, 2003; Pervukhina et al., 2010; Ji et al., 2012), 

Shapiro (2003) assumed that variations in stiff pore porosity are independent of crack 

porosity and that the compressibility of the dry-rock skeleton as a function of porosity is 

linear. The pore-space microstructure can be represented by a dual porosity model 

(equant pores and cracks). Total porosity   is the sum of stiff pore ( p ) and crack 

porosity ( c ), 

     =d p d c dP P P   ,                         (1) 

with  

   0=p d p d drs grP P C C    ,                       (2) 

   0= expc d c c drs dP C P   ,                       (3) 

where 0p  and 0c  are the pore and crack porosities at zero pressure, respectively,  

=1drs drsC K , where drsK  is the dry-rock bulk modulus with all the cracks closed,  

=1gr grC K , where grK  is the grain bulk modulus, c  is a pressure sensitivity 

coefficient related to the shape of the cracks, and Pd is the differential pressure (confining 

minus pore ones). Because the cracks are assumed to be closed at high differential 
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pressures, p  can be obtained from a linear fit of the total porosity in that range. Then, 

c  is estimated by subtracting the stiff porosity from the total porosity, and it is 

approximated by an exponential function (Shapiro, 2003; Liu et al., 2009). 

 

2.2. Dry-rock properties and pore microstructure 

A multistep methodology is proposed to model the elastic properties (e.g., Fortin et al., 

2007; David et al., 2012), where cracks are introduced into a host material containing the 

stiff pores. First, the differential effective medium theory (Benveniste, 1987) is applied to 

model the effective moduli ( pK , pG ) of the dry rock containing randomly oriented stiff 

pores, represented by spheroidal inclusions. We have 

  d1
1

dp
p

p

p

K
P

K



   ,                       (4) 

  d1
1

d
p

p
p p

G
Q

G



   ,                       (5) 

with the initial conditions  =0 = rp gK K  and  =0 = rp gG G , where grG  is the grain 

shear modulus, P and Q are the normalized compressibility and shear compliances of the 

pores, whose expressions can be found in Appendix A (David and Zimmerman, 2011). 

For dry pores, P and Q are functions of the spheroidal aspect ratio   and Poisson’s 

ratio of the grains grv . Hence, the aspect ratio of the stiff pores ( ) can be obtained from 

the elastic moduli at high pressure (cracks closed). 

Following Walsh (1965) and David and Zimmerman (2012), it can be assumed that 

cracks are penny shaped, and have the same radius R0 and height h, with aspect ratio 

 0= 2h R (Figure 1). Then, the penny shaped cracks are introduced into the host 
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material composed of minerals and stiff pores. The relation between crack density (  ) 

and elastic moduli (K, ) are established by using a differential effective medium theory 

(Benveniste, 1987) as 

  16 9

8 5

1 2

1 2
p

p p

v eK

K v e













,                      (6) 

8 5

p

v
e

v
 ,                         (7) 

where    = 3 2 6 2p p p p pv K G K G   is the Poisson ratio of the host material. Hence, 

the crack density   can be obtained from the pressure-dependent elastic moduli. In 

addition, by using the crack porosity estimated in Section 2.1, the crack aspect ratio   is 

calculated by the relation  4 3c   (e.g., Thomsen, 1995; David and Zimmerman, 

2012).  

 

2.3. Permeability and pore microstructure 

The total permeability contributed by pores and cracks can be expressed as (Bernabe, 

1991; Shapiro et al., 2015; Zheng et al., 2015) 

     =d p d c dP P P   ,                       (8) 

where p  is the matrix permeability related to the spheroidal pores and c  is the crack 

permeability. Equation (8) assumes that fluids move through the medium through two 

parallel pore systems. Similar to the porosity, p  can be obtained at high pressures, 

approximated by a linear function (Shapiro et al., 2015) or an exponential function 

(Zheng et al., 2015), while c  is estimated by subtracting the matrix permeability from 
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the total permeability and can be approximated by an exponential fit (Zheng et al., 2015). 

Both the linear and exponential fits are convenient mathematical forms to empirically 

describe the pressure dependent behavior. 

To investigate the relation between permeability and pore microstructure, several 

effective models have been developed (Guéguen & Schubnel, 2003; Zhang et al., 2016). 

If we consider a rock with circular tubes of pore radius r, the matrix permeability is 

(Al-Wardy and Zimmerman, 2004) 

2

=
8
p

p

r
 .                              (9) 

If we assume a rock containing only randomly-oriented penny-shaped cracks and crack 

aspect ratio is very low at each differential pressure, i.e. 𝛾௜ ≪ 1, the permeability is 

(Sarout, 2012)  

2 24
~

27c c i iR   ,                          (10) 

where Ri is the crack radius at each differential pressure. In this case, there is percolation 

threshold at a crack density of 𝜀௣௘௥௖௢௟௔௧௜௢௡ ~0.13 (e.g., Sarout et al., 2017). Above this 

value, the crack and pore radius can be estimated from the measured permeability.  

 

2.4. Saturated-rock elastic properties and pore microstructure 

The cracks, when the crack density is less than 0.13, only affect the elastic properties and 

not the permeability, and their radii can be estimated from the saturated-rock elastic 

properties. These are given by wave propagation equations for cracked porous media (see 

Appendix B), which describe the wave dispersion characteristics induced by the local 

fluid flow related to the microstructure (Zhang et al., 2019). By substituting a plane-wave 
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kernel into the equations, we can obtain the Christoffel equation: 

2 2 2
11 11 12 12 13 13

2 2 2
21 21 22 22 23 23

2 2 2
31 31 32 32 33 33

0

a k b a k b a k b

a k b a k b a k b

a k b a k b a k b

  
   
  

,              (11) 

where 

 11 1 2 1 1 2 2 1

2

3ca G M M q       , 2
11b   , 

 12 1 1 1 2 1 1 2 2 2a M M M q        , 2
12 fb   , 

 13 2 2 1 2 1 1 2 2 3a M M M q        , 2
13 fb   , 

21 1 1 1 2 1 1a M M q    , 21 12b b , 

22 1 1 2 1 2a M M q  , 2 2
22 1 1 1b m i b     , 

23 1 2 1 3a M q  , 23 0b  , 

31 2 2 1 2 2 1a M M q    , 31 13b b , 

32 1 2 2 2a M q , 32 0b  , 

33 2 1 2 2 3a M M q  , 

with 

 1 1 2 1 1 2 2q M M Z     , 2 1 2 1q M Z  , 3 1 2 2q M Z  , 

 2 2 2 2 2 2 220 0 02 1
1 2 0 20 2 1 0 1 2 1 2

10 2 1

33
ln ln +

8 2 8 2f
o o

R L R L
Z R i R M M

R R

           
  

    
        

   
, 

where 1 2= +    is the total porosity, with 1 = p   and 2= c   are the porosities of the 

host medium and inclusions, respectively, 0m m mv  , where mv  and 0m  are the 

volume fraction of the m phase and the matrix porosity of a local area internal to the m 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/doi/10.1093/gji/ggaa327/5868249 by U

niversity of G
lasgow

 user on 11 July 2020



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

phase,   is the fluid viscosity, 1= p   and 2 = c   are the permeabilities of the host 

medium and inclusions, respectively, and   and f  are the densities of the porous 

rock and pore fluid, where  = 1 gr f     , with gr  the grain density. The 

coefficients m1 and m2 are given by 1 1 1fm     and 2 2 2fm    (Biot, 1962), with 

1  and 2  representing the tortuosities of the host medium and inclusions, respectively. 

Moreover, G is the dry-rock shear modulus and c , 1 , 2 , 1M , 2M  are stiffness 

coefficients, whose expressions can be found in Appendix C (Zhang et al., 2019). The 

fluid variation by fluid flow between the host medium and inclusions is denoted by  , 

and  1/22
0 12L R  is the characteristic flow length.  

The wavenumber k, solution of equation (11), is used to obtain the P-wave phase velocity 

of the saturated rock as    1
v ReP k 


 , where   is the angular frequency. Finally, 

the crack radius can be estimated from the measured P-wave velocities. 

 

3 RESULTS 

Two rock samples are selected, namely, Fontainebleau sandstone and Chelmsford granite, 

whose rock properties at normal conditions are given in Table 1. The two samples are 

measured at a frequency of 0.5 and 1 MHz, and at a range of differential pressure from 1 

to 50 and from 0 to 100 MPa, respectively. A detailed description of the sample 

characterization and measurement procedure can be found in Pimienta et al. (2015a, 

2015b), Nadan and Engelder (2009) and Coyner (1984). 
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3.1. Estimation of pore and crack porosity 

The pressure dependency of the stiff pores and crack porosity, by fitting the experimental 

porosity with the dual-porosity model, is shown in Figure 3, where the goodness of fit (R2) 

is 0.999 for two samples. For Fontainebleau sandstone, 6.952 0.003357*p dP    (%) 

and 0.06474*exp( 0.2276* )c dP    (%), where Pd is given in MPa. For Chelmsford 

granite, 0.8556 0.001134*p dP    (%) and 0.2501*exp( 0.07217* )c dP    (%). 

These results show that the fraction of cracks of Fontainebleau sandstone is less than that 

of Chelmsford granite.  

 

3.2. Estimation of the pore and crack aspect ratios 

The P- and S-wave velocities as a function of differential pressure for dry Fontainebleau 

sandstone and Chelmsford granite are shown in Figure 4, used to estimate the pore and 

crack aspect ratios. As discussed in Section 2.2, the dry-rock bulk and shear moduli are 

first estimated from the measured P- and S-wave velocities at high pressures. The 

inferred aspect ratios of the stiff pores are 0.18 (the error on the P- and S-wave velocities 

is 0.67 % for Fontainebleau sandstone) and 0.03 (the error is 1 % for Chelmsford granite). 

The crack density and aspect ratio for the two samples at each differential pressure are 

shown in Figure 5. The crack density decreases monotonically with increasing 

differential pressure, indicating that the cracks close gradually with increasing pressure. 

The contribution of the cracks to the permeability vanishes when the crack density is less 

than 0.13, whereas the effect of these cracks on the elastic properties is relevant. Similar 

conclusions were obtained for high porosity rocks, but the contribution of the cracks to 

the transport properties was not considered (Pimienta et al., 2017).  
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The evolution of the crack aspect ratio with differential pressure is estimated by using the 

inferred crack porosity and density. Compared to the crack density, the evolution of the 

crack aspect ratio is non-monotonic for Fontainebleau sandstone, which is similar to the 

results reported by Sarout et al. (2017), whereas the trend is monotonic for Chelmsford 

granite. Note that our procedure differs markedly from that of David and Zimmermann 

(2012) who instead use the pressure dependence of the crack density and the physics of 

pressure-induced crack closure to infer, more realistically, a distribution of zero-pressure 

crack aspect ratios. In this work, the crack density inferred from the modulus deficits is 

related to the crack porosity estimated at the same pressure through eqs. (1-3), by an 

effective aspect ratio. Thus, a model crack microstructure is established that involves 

open cracks with a common, pressure-dependent, aspect ratio. In addition, based on the 

relation 𝑃௖~𝐸𝛾, the aspect ratios for crack closure are also given in Figure 5. The aspect 

ratios for crack closure increase with increasing differential pressure, implying that the 

cracks with lower aspect ratio close first under increasing differential pressure. The 

effective aspect ratios of the open cracks decrease with increasing differential pressure, 

implying that the cracks generally become flat under increasing differential pressure. 

 

3.3. Estimation of pore and crack radii 

Figure 6 shows the comparison between the experimental and predicted permeabilities, 

based on equations (8) to (10), where Fontainebleau sandstone is saturated with water and 

Chelmsford granite with nitrogen. Similar to the discussion on porosity, the total 

permeability can be divided into the matrix and crack permeabilities, which can be 

approximated by exponential functions (Zheng et al., 2019), with R2=0.998 for 
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Fontainebleau sandstone and R2=0.999 for Chelmsford granite. We obtain 

2.004 * exp( 0.001837 * )p dP    and 1.54 * exp( 0.04279 * )p dP   , and

2.765*exp( 0.3632* )c dP    and 31.42*exp( 0.3225* )c dP   , respectively. 

Note that the crack permeability cannot be neglected in comparison with the matrix 

permeability at low differential pressures. The former is greater than the matrix 

permeability for Chelmsford granite, which is consistent with the result of Zheng et al. 

(2019), but this is different for high porosity rocks (Pimienta et al., 2017). 

As discussed in Sections 3.1 and 3.2, the porosity and aspect ratios of pores and cracks 

are estimated from the known porosity and dry-rock velocities. These are used as input 

for the effective permeability model to predict the pressure dependency of pores and 

crack radii. Hence, the best fit between the modeled and measured data provides the 

range of pore radius at all differential pressures, while in comparison with 𝜀௣௘௥௖௢௟௔௧௜௢௡ 

~0.13, the contribution of cracks to the total permeability are mostly distributed in the 

range of 1~5 MPa (Fontainebleau sandstone) and 0~30 MPa (Chelmsford granite). The 

range of the crack radius is estimated at low differential pressures. To estimate the whole 

range, the pressure dependency of the saturated-rock velocities is modeled with equation 

(11). Note that all the input parameters (i.e., porosity, aspect ratio and radii of pores and 

cracks) are estimated at low differential pressures. The tortuosities of the host medium 

and inclusions are  01 2 1 1m m    (Berryman, 1979), the crack bulk modulus is 

   2 2 1b c p pK K G v     (Zatsepin and Crampin 1997), and the dry-rock 

modulus of the host medium is that at high differential pressure, i.e. Kb1=32.1 GPa 

(Fontainebleau sandstone) and 44.9 GPa (Chelmsford granite). Moreover, 20 = 0.30 
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from a fit of the P-wave velocities of saturated rocks at low differential pressures (this 

value is in agreement with that of Pride et al. (2004)). It is assumed that 20  is constant 

as the differential pressure changes. These are used as input properties in equation (11) 

(those at normal conditions are listed in Table 1), to estimate the crack radius at high 

differential pressures. The P-wave velocities are measured at ultrasonic frequencies and 

wave dispersion induced by local fluid flow affects the estimated crack radius. Then, we 

consider the P-wave velocities at low frequencies, where the pore fluid has enough time 

to equilibrate. The dry-rock moduli at low and high frequencies are very similar (e.g., 

Sarout et al., 2017; Schijns et al., 2018), and the saturated-rock velocities at low 

frequencies can be calculated with Gassmann equation. Finally, the crack radius is 

estimated from the P-wave velocities of the saturated rock at low and high frequencies. 

The comparison of the theoretical and experimental P-wave velocities for the two 

samples are shown in Figure 7. The pore fluids are water for Fontainebleau sandstone (Kf 

=2.25 GPa, f = 1000 kg/m3, =0.00089 Pa•s) and benzene for Chelmsford granite (Kf 

=1.21 GPa, f = 880 kg/m3, =0.000652 Pa•s). Due to the small range of differential 

pressures, the effect of pressure on the fluid properties can be ignored. To account for the 

measured P-wave velocities, we also report the results from Gassmann equation 

(Gassmann, 1951), the squirt-flow model (Gurevich et al., 2010) and equation (11). It 

appears that equation (11) is in better agreement with Gassmann equation at low 

frequencies, but this equation fails to explain the measurements. The predictions from the 

squirt-flow model and equation (11) are better, since these models consider the local fluid 

flow between pores and cracks. The differences between predictions and measurements 

can be attributed to the fact that at low differential pressures, there other dispersion 
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mechanisms induced by the cracks, such as scattering. Moreover, we assume idealized 

penny-shaped cracks. These differences gradually decrease with increasing differential 

pressure due to the closure of cracks. Similar conclusions can be found in previous works 

(e.g., Adelinet et al., 2010; Li et al., 2018). 

The pressure dependency of the pore and crack radii is given in Figures 8 and 9, 

respectively. It is shown that there is no variation of pore radius for Fontainebleau 

sandstone, compared to a decrease of pore radius for Chelmsford granite as differential 

pressure increases. The nearly pressure independency for Fontainebleau sandstone may 

be due to the fact that p  and p  do not depend on pressure, which means that the 

grains are well sorted, as reported by Pimienta et al. (2015a). The crack radius decreases 

with increasing differential pressure for the two samples. Note also that the range of crack 

radius is larger than that of pore radius, which indicates that the pressure sensitivity to 

cracks is higher. 

 

4 DISCUSSION 

 

4.1. Assessment of model assumption 

To model the pressure dependency of the rock properties, the assumption is that the pore 

space is described by pores (insensitive to pressure) and cracks (sensitive to pressure). 

The modeling results suggest that this assumption is enough to explain the 

pressure-dependent physical properties, and use the present approach to characterize the 

pore microstructure. In addition, the assumption is also confirmed by the microscopic 

image of Fontainebleau sandstone, which can be found in Pimienta et al. (2015a). The 
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pore structure of rocks is composed of a distribution of stiff (equant) pores and cracks. 

However, this decomposition is not unique and, for instance, Sun et al. (2018) divide the 

pore structure into three parts: stiff pores, compliant pores (cracks) and intermediate 

pores. Hence, the estimated crack porosity is uncertain, since it depends on the 

decomposition of the pore structure and the pressure range. 

 

4.2. Assessment of the estimated crack density 

To estimate the crack density, the differential effective medium (DEM) model allows us 

to analyze the interaction between cracks and pores, and avoids overestimated crack 

densities by using the non-interaction approximation (Pimienta et al., 2018). To highlight 

the interaction between cracks, a comparison between the DEM and Mori-Tanaka (MT) 

models (Benveniste, 1987) for predicting crack density is shown in Figure 10. The MT 

model accounts for interactions between the pores, but the interaction between cracks is 

neglected. For Fontainebleau sandstone, when the crack density is less than 0.1, the two 

models predict the same crack density, while they give different results as crack porosity 

increases (corresponding to decreasing differential pressure). These conclusions are 

consistent with the results of Pimienta et al (2018), implying that the MT model 

overestimates the crack density compared to the DEM model at low differential pressures. 

A similar behavior can be observed for Chelmsford granite at low differential pressures, 

whereas the predicted crack density from the DEM model is slightly higher than that of 

the MT model as the crack porosity decreases, which suggest that the DEM model can 

fully account for the presence of cracks and it is suitable to estimate the crack 

distribution. 
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4.3. Assessment of the estimated cracks radius 

A major concern about permeability is that the measurements depend on the type of fluid 

nature (nitrogen and benzene in this case), and further work is needed to measure the 

physical properties at the same experimental conditions. In addition, as described in 

Section 3, the results indicate that cracks are dominant at low differential pressures, 

corresponding to crack densities above 0.13, and although cracks close with increasing 

differential pressure, their effect cannot be neglected. To estimate the crack radius, the 

assumption that the total permeability is the sum of matrix and crack permeabilities has 

been proposed. However, cracks and pores may be interconnected in a complex pattern 

instead of following a parallel connection, and therefore more work is required to develop 

a proper effective permeability model. 

To estimate the crack radius, the dry-rock modulus of the host medium 1bK  and the 

matrix porosity of cracks 20 , are required in equation (11). Considering that the stiff 

pores are insensitive to pressure, 1bK can be approximated by the value at high 

differential pressures, and 20  is estimated to be 0.3 % from P-wave velocities of at low 

differential pressures. This value of 20  may be different for different rocks or different 

pressure conditions. For the sake of simplicity, the two parameters are assumed to be 

constant at all differential pressures, so that the crack radius at high differential pressures 

can be predicted from P-wave velocities of saturated rocks at low and high frequencies.  

 

4.4 Comparison with previous models 

Our model is built on the basis of the observed pressure dependence of the porosity and 
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of the elastic properties of the dry and saturated medium, with additional simple 

expressions of the permeabilities of pores and cracks. A potentially significant 

over-simplification, relative to the approach of David and Zimmermann (2012), is the 

assumption of a single effective crack aspect ratio at any given pressure rather than a 

distribution of cracks. However the “effective” value provides an approach to describe 

the effect of cracks on permeability. This is not the case in David and Zimmermann 

(2012) and Li et al (2018), because they predicted saturated-rock velocities using 

effective medium theories, where the effect of permeability and local fluid flow between 

pores and cracks are not considered. Though Gurevich et al. (2010) analyzed the effect of 

local fluid flow, the effect of permeability is also not included. 

 

5 CONCLUSIONS 

We propose a model to characterize the aspect ratio and radii of pores and cracks from 

the experimental porosity, elastic properties and permeability as a function of the 

differential pressure. The results show that a complete characterization is achieved 

compared with the previous models, and a significant variation of the rock physical 

properties is mainly due to the crack behavior at low differential pressures. Further 

studies should be performed to compare these characteristics with the actual 

microstructural observations. Our model does not explain the experimentally observed 

stiffening of the medium by fluid saturation, which implies that a distribution of pores 

and cracks should be considered, and in such fluid-saturated media, it has been suggested 

that the waves might selectively follow fast paths that avoid much of the porosity. 

Moreover, our model can be extended to predict other physical properties, such as 
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electrical resistivity and thermal conductivity. 
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Appendix A (P and Q) 

P and Q are the normalized compressibility and shear compliances of dry pores, which 

depend on the spheroidal aspect ratio,  , and Poisson’s ratio of the grains, grv :  
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where    = 3 2 6 2gr gr gr gr grv K G K G  .  
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Appendix B. Wave Propagation Equations for Cracked Porous Media 

Following Zhang et al. (2019), the wave propagation equations for cracked porous media 

can be expressed by 

2𝐺∇𝑒௜௝ + 𝜆௖∇𝑒 − 𝛼ଵ𝑀ଵ∇൫𝜉(ଵ) − 𝜙ଵ𝜙ଶ𝜍൯−𝛼ଶ𝑀ଶ∇൫𝜉(ଶ) + 𝜙ଵ𝜙ଶ𝜍൯ 
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where  = 1 2ij j i i je u u    are the solid strain components (where i, j=1, 2, 3 represent 

the coordinates), =e u . 𝜉(௠) = −∇ ∙ 𝐰(௠) is the increment of fluid content (m=1, 2 

refer to the host medium and penny-shaped inclusions (cracks), respectively),

  ( ) mm
m w U u , where  1 2 3, ,

T
U U UU  and  1 2 3, ,

T
u u uu  are the fluid and 

solid displacements, respectively. A dot above a variable denotes a partial time 

derivative.  

 

Appendix C. Expressions of the Stiffness Coefficients  

Following Ba et al. (2011), the stiffness coefficients can be given by 
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where Kb=K, the dry-rock moduli of the host medium and crack are Kb1 and Kb2, 

respectively.  
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Table 1. Input properties of Fontainebleau sandstone and Chelmsford Granite at normal 

conditions: grK , grG  and gr  are the bulk modulus, shear modulus and density of the 

solid grains; fK , f and   are those of the fluid; K and G are the bulk and shear 

moduli of the dry rock; 1  ( 2 ) and 1 ( 2 ) are the matrix porosity and permeability of 

the host medium (inclusions); and  ,   and R0 are the crack density, aspect ratio and 

radius. 

 
 

Parameter Fontainebleau sandstone Chelmsford Granite 

grK (GPa) 37a 56 b 

grG (GPa) 44a 35.6 

gr  (kg/m3) 2650a 2625 b 

fK  (GPa) 2.2 c 1.21b 

f  (kg/m3) 1000 c 880 b 

  (Pa•s) 0.001 c 0.000652 b 

G (GPa) 9.957  15.571  

K (GPa) 13.216 17.285 

Kb1 (GPa) 32.1  44.9  

Kb2 (GPa) 0.0038  0.0396  

1  (%) 6.95 0.86 

2 (%) 0.0516 0.25 

1  (mD) 2 31.4 

2  (mD) 1.92 1.54 

  0.6243 0.4355 

  0.000197 0.0014 

R0 (m) 0.0254 0.0067 

a data after Mavko et al. (2009). 
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b data after Coyner (1984). 

c data after Pimienta et al. (2015a, 2015b). 
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Figure 1. Conceptual model of the rock microstructure of a cracked porous medium 
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Figure 2. Workflow of the pore microstructure prediction based on experimental data and 

theoretical models 
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Figure 3. Total, stiff and crack porosities as a function of the differential pressure for 

Fontainebleau sandstone (a) and Chelmsford granite (b). The black circles denote the 

experimental data, the solid black, blue and red lines refer to the total, stiff and crack 

porosities based on the dual-porosity model. 
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Figure 4. P- and S-wave velocities as a function of the differential pressure for 

Fontainebleau sandstone (a) and Chelmsford granite (b). The solid lines are the fit with 

the DEM model and the circles are measurements. 
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Figure 5. Crack densities and aspect ratio as a function of the differential pressure for 

Fontainebleau sandstone (a) and Chelmsford granite (b). The solid black line with circles 

denotes the crack density, the solid red line with squares are the crack aspect ratio, the 

solid black line with squares are the crack aspect ratio from 𝑃௖~𝐸𝛾 and the solid blue 

line respresnets the corresponding crack density at   =0.13. 
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Figure 6. Total, matrix and crack permeability as a function of the differential pressure 

for Fontainebleau sandstone (a,b) and Chelmsford granite (c,d). The black circles denote 

the experimental data; the solid black, red and blue lines refer to the total, matrix and 

crack permeabilities from equation (8), respectively; the solid black, red and blue lines 

with diamonds refer the to the total, matrix and crack permeabilities from equations (9) 

and (10). 
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Figure 7. Comparison of the experimental and theoretical P-wave velocities for saturated 

Fontainebleau sandstone (a) and Chelmsford granite (b). The red circles and squares 

denote the experimental data at saturated and dry conditions, the solid pink and green 

lines with squares indicate the modeling results at low and high frequencies by using the 

equation (11), the solid black line with squares refer to the modeling results at low 

frequencies by using Gassmann equation (Gassmann 1951), and the solid blue line with 

squares to the theory at high frequencies (Gurevich et al., 2010). 
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Figure 8. Pore radius as a function of the differential pressure. The solid blue line with 

circles corresponds to Fontainebleau sandstone, and the solid black line with circles 

denotes to Chelmsford granite. 
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Figure 9. Crack radius as a function of the differential pressure. The solid blue line with 

circles corresponds to Fontainebleau sandstone, and the solid black line with circles 

denotes to Chelmsford granite. 

0 20 40 60 80 100
Differential pressure (MPa)

10-2

10-1

100

101

102

103

104

105

C
ra

ck
 r

ad
iu

s 
(

m
)

Chelmsford granite
Fontainebleau sandstone

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/doi/10.1093/gji/ggaa327/5868249 by U

niversity of G
lasgow

 user on 11 July 2020



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

Figure 10. Crack density as a function of the crack porosity. The solid blue line with 

circles refers to the predictions of the MT model, and the solid black line with circles 

refers to predictions of the DEM model. 
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