
1. Introduction
It is essential in seismic wave propagation in rocks to describe the anelastic behavior observed in a broad 
range of frequencies to be able to predict their microstructural properties. In particular, this behavior is 
affected by the rock texture (or fabric) at different scales, which implies fluid flow under the passage of a 
compressional wave (Borgomano et al., 2017; Zhang et al., 2020). Previous experimental and theoretical evi-
dence shows that the frequency-dependent elastic properties are related to wave-induced fluid flow (WIFF) 
mechanisms (Ba et al., 2011, 2017; Batzle et al., 2006; Best et al., 2013; Carcione & Picotti, 2006; Guo & 
Gurevich, 2020a, 2020b; King & Marsden, 2002; Müller et al., 2010; Pimienta et al., 2015a, 2015b; Tisato & 
Quintal, 2013; Yin et al., 2017, 2019).

Wave propagation is affected by rock microstructure at different scales (Matonti et al., 2015), and effective 
medium theories can provide reliable models (Benveniste, 1987; David & Zimmerman, 2011; Eshelby, 1957; 
Jakobsen et al., 2003; Kuster & Toksöz, 1974; Mori & Tanaka, 1973; Norris, 1985; Walsh, 1965; Wu, 1966). 
Among these models, two of the most popular approaches are differential effective medium (DEM) (Berry-
man, 1992; Zimmerman, 1991) and self-consistent approximation (SCA) theories (Berryman 1980a, 1980b; 
Carcione et al., 2020), since both theories take into account the pore and crack interactions. It has been 
generally accepted that there is no velocity dispersion in dry rocks (Gist, 1994), i.e., their properties are 
independent of frequency. However, Bailly et al. (2019) found that P-wave velocity of dry rocks decreases 
from ultrasonic to seismic frequencies, and the phenomenon may be attributed to different microstructural 
features, such as pores, cracks, and fractures. These authors considered these features at different scales em-
bedded in a host medium, based on a DEM theory, and compared results with measured P-wave velocities.

By considering that the WIFF occurs at the wavelength scale (i.e., the global flow), Biot (1962) derived the 
equations of elastic wave propagation in a porous medium saturated with a viscous fluid, starting from 
first principles. He predicted a slow compressional wave, caused by the differential motion between the 
skeleton and the pore fluid (Biot, 1956). At low frequencies, this motion can be neglected and the P-wave 
velocity is consistent with Gassmann equation (Gassmann, 1951). However, Biot theory underestimates the 
wave dispersion and attenuation observed in laboratory and field experiments. WIFF occurs at microscopic 

Abstract The fractal texture (or fabric) of porous media, which supports fluid flow at different scales, 
is the main cause of wave anelasticity (dispersion and attenuation) on a wide range of frequencies. To 
model this phenomenon, we develop a theory of wave propagation in a fluid saturated infinituple-porosity 
media containing inclusions at multiple scales, based on the differential effective medium (DEM) theory 
of solid composites and Biot-Rayleigh theory for double-porosity media. The dynamical equations are 
derived from first principles, that is, based on the strain (potential), kinetic, and dissipation energies, 
leading to generalized stiffness and density coefficients. The scale of the inclusions can be characterized 
by different distributions. The theory shows that the anelasticity depends on the size (radius) of the 
inclusions, parameter θ (exponential distribution), mean radius r0 and variance σr

2 (Gaussian distribution) 
and the fractal dimension Df (self-similar distribution). When Df = 2, θ = 1 and σr

2 = 4, the three 
distributions give the same P-wave velocities and attenuation, since each added inclusion phase has nearly 
the same volume fraction. For the modeling results, the range of anelasticity of Df = 2.99/θ = 1/σr

2 = 4 is 
broader than that of Df < 2.99/θ < 1/σr

2 < 4. To confirm the validity of the model, we compare the results 
with laboratory measurements on tight sandstone and carbonate samples in the range 1 Hz–1 kHz, Fox 
Hill sandstone (5 Hz–800 kHz) and field measurements of marine sediments (50 Hz–400 kHz). This 
comparison shows that the model successfully describes the observed anelasticity.
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and mesoscopic scales, at the pore scale and heterogeneities much smaller than the wavelength, respec-
tively. The microscopic mechanisms involve fluid flow between stiff pores and compliant cracks (squirt 
flow) (Chapman et al., 2002; Gurevich et al., 2010; Mavko & Jizba, 1991; Mavko & Nur, 1975). The glob-
al and squirt flow mechanisms exist simultaneously in a cracked porous medium and a number of theo-
retical models have been developed (Carcione & Gurevich, 2011; Dvorkin & Nur, 1993; Tang, 2011; Tang 
et al., 2012; Wu et al., 2020; Yao et al., 2015; Zhang, Ba, et al., 2019).

On the other hand, WIFF at the mesoscopic scale (larger than the grain scale but much smaller than the 
wavelength), occurs in patchy saturated media or when the flow occurs between the two constituents of 
different frame compressibility. This WIFF occurs in a wide range of scales. The effect of this mechanism 
on wave dispersion and attenuation have been investigated by the researchers (Ba et al, 2011, 2012; Car-
cione et al., 2003; Liu et al., 2009, 2010; Pride et al., 2004; Santos et al., 2015; White, 1975; White et al., 1975; 
Zheng et al., 2017), and it is considered that this mechanism is capable of describing wave attenuation in 
the seismic exploration band. However, these models assumed single-scale fluid flow. By considering two 
mesoscopic flow mechanisms induced by rock fabric and patchy saturation, Ba et al. (2015, 2017) developed 
a double double-porosity model. Based on Ba et al. (2015), Sun et al. (2016) considered a triple-layer spher-
ical patch, where the size of the fluid pocket can be larger or smaller than the size of the solid inclusion. 
This model was extended to an ellipsoidal triple-layer patch containing flat pore spaces and penny-shaped 
cracks (Sun et al., 2018).

Zhang, Yang, et al. (2019) proposed a model to analyze the effects of WIFF at the microscopic and meso-
scopic scales on wave dispersion and attenuation. By considering that local fluid flow occurs at different 
scales, Sun and Gurevich  (2020) developed a model by combining the stress-dependent (David & Zim-
merman, 2012) and squirt-flow models (Glubokovskikh et al., 2016; Gurevich et al., 2010). Similarly, Zhao 
et al. (2020) investigated the effect of pore pressure caused by elastic interactions between ellipsoidal pores 
on the elastic properties. All these theoretical models assume a given shape or size of the fabric struc-
tures and cannot fully characterize the effect of WIFF on wave propagation at different scales. In fact, the 
fabric geometrical features are inherently complex, and some studies considered a random distribution 
characterized by autocorrelation functions, such as the exponential and Gaussian ones (Ikelle et al., 1993; 
Klimeš,  2002; Rao et  al.,  2020). Following this approach, Pride and Masson  (2006), Müller and Gurev-
ich (2005), and Müller et al. (2008) studied the effects of fluid patches on wave attenuation. Furthermore, 
other experimental studies indicated that the fabric distribution is self-similar or fractal (Katz & Thomp-
son, 1985; Krohn, 1988).

The motivation of this study is to establish the relation between wave anelasticity and fabric heterogeneity 
by assuming that the inclusions are scale-dependent. We develop an infinituple-porosity media (IPM) mod-
el, based on the DEM and Biot-Rayleigh theories (Section 2). By considering that the inclusions are charac-
terized by exponential, Gaussian and self-similar distributions, we provide numerical examples to analyze 
the effect of different distributions on wave dispersion and attenuation (Section 3). The theoretical results 
are compared with the broadband measurements in the laboratory and with field data (Section 4). Then, 
Section 5 discusses the influence of how the inclusions are added and the reliability of the results. Finally, 
conclusions are presented in Section 6.

2. Energies and Wave Propagation
We assume that the inclusions (1) are spherical, (2) have different dry-rock bulk and shear modu-
li, KbI

m and GbI
m, (3) have a dilute concentration to avoid mutual interactions, (4) have different matrix 

porosity, ϕIm, (5) have different permeability, κI
m and (6) have different radius, rm. The total porosity is 

        00 0 1 1I Im mv v v , where vm is the volume fraction of the m-th inclusion phase, ϕ00 and v0 
are the matrix porosity and volume fraction of the initial host medium, respectively.

2.1. Strain (Potential), Kinetic and Dissipation Energies

In this section, we describe a procedure whereby the IPM model can be realized. In the first addition, the 
inclusion phase with volume fraction v1 is embedded into an initial host medium with volume fraction v0. 
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Then, the volume fractions of the host medium and inclusions in the new medium are   1, 0 0 1/Hv v v v  
and v1,I  =  v1/(v0+v1), respectively, the corresponding absolute porosities are  1, 00 1,H Hv  and 
 1, 1 1,I I Iv , and the total porosity is    1, 1, 1,T H I. In a similar way, the volume fractions of the two com-
ponents in a new medium after the m-th addition are           , 0 1 1 0 1/m H m mv v v v v v v  and 

    , 0 1/m I m mv v v v v , respectively. The corresponding absolute porosities are   , 1, ,m H m T m Hv  and 
 , ,m I Im m Iv , and the total porosity is    , , ,m T m H m I. Note that the matrix porosity of the host medium 
is the total porosity from the previous addition.

At each addition, the new medium can be treated as a double-porosity medium. To simplify the equations, 
the porosity (ϕm,H) and matrix porosity (ϕm−1,T) of the host medium can be denoted with ϕ and ϕH0, respec-
tively. Because the fabric is represented by inclusions, their volume fraction vm is dimensionless. Then, the 
incremental porosity is also dimensionless, the porosity ϕm,I is expressed as dϕ. Similarly, the matrix porosity 
(ϕIm), the dry-rock bulk modulus (KbI

m) and permeability (κI
m) of the inclusions are expressed as ϕI0, KbI, and 

κI, respectively.

By considering that the rock fabric has a broad size distribution, we develop an IPM model based on the 
DEM theory of solid composites (e.g., Berryman, 1992), where the fabric is treated as inclusions of different 
sizes and physical properties. The inclusions are added incrementally into a homogeneous host medium 
(see Figure 1). Each addition is composed of a set of inclusions with the same physical properties and radi-
us. Then, a new double-porosity medium is built and the equivalent response of the host medium plus in-
clusions is obtained with the Biot-Rayleigh theory (Ba et al., 2011). This equivalent homogeneous medium 
is considered as the host medium in the next addition of inclusions. According to Ba at al. (2011), the strain 
energy of a double-porosity medium is

                                 2 22
1 2 1 12 2 4 2 2 ,H H H H I I I IW A N I NI Q I d R d Q I R (1)

where I1,I2,I3 are the three rotation invariants of the matrix (frame) and ξH and ξI are the fluid strains in the 
host medium and inclusions, respectively. The scalar ζ denotes the fluid strain increment between the host 
and inclusions with radius r0 (r0 = rm), given by




 
   

 

3
0
3

1 1 ,r
r

 (2)

where r is the dynamic radius of the inclusion after WIFF, and the Biot stiffness coefficients are
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where Ks (Kf) is the grain (fluid) bulk modulus, KbH (GbH) is the dry-rock bulk (shear) modulus of the initial 
host medium, and Kb and Gb are the dry-composite bulk and shear moduli, respectively, which are given by 
the differential scheme (Berryman, 1992).

The kinetic energy function T for a double-porosity medium is (Ba et al., 2011; Biot, 1962)

                      2 2 2
00 01 , 02 , 11 , 22 ,2 2 2 2 ,i i i H i i I i H i I LFF

i i i i i
T u u U u U U U T (4)
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Figure 1. Idealized illustration of fabric structures, where different types of inclusions are embedded into a host 
skeleton (a) Uncemented or loose-contact granular material. (b) Large grains with dissolved pores. (c) Grain aggregates 
with defined contacts. (d) Grains with intragranular microcracks.
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where    1 2 3, ,u u uu ,    1, 2, 3,, ,H H H HU U UU  and    1, 2, 3,, ,I I I IU U UU  are the solid displacement, and 
fluid displacements in the host medium and inclusions, respectively. TLFF is the kinetic energy function 
induced by the WIFF between the inclusions and host medium,

    


 
   

 


2
2 20
0

0

1 .
6

I
LFF f

H

dT r (5)

The density coefficients are

            00 01 021 ,sd (6a)

    01 11,f (6b)

     02 22,f d (6c)

  11 ,H f (6d)

   22 ,I f d (6e)

where ρs (ρf) is the grain (fluid) density, and αH and αI are the tortuosities of the host and inclusions, respec-
tively, which are given by Berryman (1979)

 
 

   
         

   0 0

1 1 1 11 and 1 .
2 2H I

H I
 (7)

Similarly, the dissipation function of a double-porosity medium is

                   1 22 2 ,H H I I LFFD b b Du U u U u U u U (8)

where

    


 2 2 2
0 0

1 ,
6LFF I

H
D r d (9)

is the dissipation energy function induced by the WIFF between the inclusions and host medium, η is the 
fluid viscosity, κH is the permeability of the host medium, and

 


 0
1 ,H

H
b (10a)

  


 0
2 .I

I

db (10b)

2.2. Wave Propagation Equations

Using Hamilton's principle and the Lagrangian equation L = T-W, we obtain the dynamical equations

    

  

N A N e Q d QH H I I

H

           
  

2

00 01

u

u u

    

        02 1 2u u U u UI H Ib b     , (11a)

       Q e R d bH H H H H             01 11 1u u u U , (11b)
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       Q e R bI I I I I            02 22 2u u u U , (11c)
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, (11d)

where e is the solid divergence field. The stiffness, density and dissipation coefficients in Equations 3, 6 
and 10 are also a function of ϕ and dϕ. Hence, there are high-order terms in dϕ in Equation 11. Let us define

              1 1 / / /b s s f s fB K K K K K K d (12a)

            2 1 / / 1 / .b s s f s fB K K K K K K d (12b)

and multiply Equations  11a and  11d by B1B2, Equation  11b by B1 and Equation  11c by B2. Neglecting 
high-order terms in dϕ, we obtain
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Compared with Equations 3 and 6, the stiffness and density coefficients in Equation 14 are dependent on ϕ, 
and note that first-order terms in dϕ appear in Equation 13.

The P- and S-wave complex wave numbers (kP and kS) are obtained with a plane-wave analysis of Equa-
tion 13 [see Equations B1–B4 in Ba et al. (2011)]. Then, the complex bulk and shear moduli of the composite 
porous medium are
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G d d
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where ρf is the fluid density and ω is the angular frequency.

Gassmann Equations (Gassmann, 1951) are applied to compute the dry-rock complex moduli at the end of 
each addition, and used as the dry moduli of the new host medium for the next addition.

   
 

   
sat

sat
,fb

s s b s f

KK K
K K K K d K K (16a)

 sat .bG G (16b)

By using Equations 13–16 at each addition, all inclusions are added incrementally until the final IPM is 
obtained.

2.3. Infinituple-Porosity Theory

The size of the inclusion follows simple correlation functions (Klimeš, 2002), with dϕ = ϕ'(r)dr. The integral 
Equations of wave propagation in the IPM are

N A N e Q r dr Q r drH H I I              
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where ϕI0 and κI correspond to a scale (radius) r.  0H , H, the stiffnesses A, N , HQ , IQ , HR  and IR , and the den-
sity coefficients 00, 01, 02, 11, and 22, are obtained as in the discretization procedure of Section 2.1. In the 
discretization progress, Equations 13–16 are used in each iteration and the final P and S wave numbers are 
obtained at the last iteration, which are used to compute the wave velocity and attenuation of the final IPM.

3. Numerical Examples
3.1. Random-Fractal Porous Media

3.1.1. Exponential Distribution

First, we assume that the distribution of inclusions is exponential, so that the volume fractions are (Müller 
& Gurevich, 2005)






,
1 ,

r

I Ev e (18)

with θ > 0 is a constant. We assume that the inclusion radii are distributed in the ranges (0.01–50) and 
(0.001–50) mm, and the total volume fraction is 0.1. Then, the inclusions are divided into 25 additions and 
the volume fraction of each addition is determined by Equation 18. The volume fractions of the inclusions 
as a function of the inclusion radii and different values of θ (10−3, 10−2, 100) are shown in Figure 2. They 
decrease exponentially with increasing radius and tend to be the same as the θ increases (see black, blue, 
and red curves with triangles).

An example is presented here to analyze how the inclusions at multiple scales affect the wave attenuation 
and dispersion, where the bulk modulus of the grain is 38 GPa and its density is 2,650 kg/m3. We further as-

sume that the inclusions have the same dry-rock elastic moduli and ma-
trix porosity, with the other properties listed in Table 1. The volume frac-
tions of the inclusions are the same as those of Figure 2. Figure 3 shows 
the P-wave velocity (VP) and attenuation (1/Q) as a function of frequency 
for different values of θ and scale ranges. Comparing the black, blue and 
red curves for the same scale shows that the dispersion and attenuation 
ranges are wider with increasing θ. Moreover, at the same θ (see brown 
and black curves), the P-wave velocity decreases as the scale range of the 
inclusion radii increases, and the difference in the P-wave velocity (and 
attenuation) is quite pronounced, which indicates that volume fraction of 
the inclusion phases is significantly different at different scale ranges (see 
brown and black curves with triangles in Figure 2). It can be seen that the 
low- and high frequency P-wave velocities tend to the same value when 
the total inclusion volume fraction is constant.

3.1.2. Gaussian Distribution

In this case, we consider a mean radius r0 and variance σr
2, and the vol-

ume fractions (Müller & Gurevich, 2005; Sarout, 2012)

 


     
 

2
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Figure 2. Volume fractions of the inclusion phases as a function of 
inclusion radius for different values of θ.
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We assume that the scale (radius) range and total volume fraction are the same as in Section 3.1.1. Figure 4 
shows the volume fractions of the inclusions for different mean radius r0 and variance σr

2. When r0 and the 
scale range are the same (see black, blue and red curves with triangles), the volume fractions tend to be the 
same as the variance σr

2 increases. In contrast, when σr
2 and the scale range are the same (see black and 

magenta curves with triangles), the curve shifts toward the high inclusion radius end with increasing mean 
radius r0.

The P-wave velocity and attenuation as a function of frequency with different mean radius r0 and variance 
σr

2 are shown in Figure 5, by using the properties listed in Table 1. At the same r0 and scale range (see black, 
blue and red curves), the P-wave velocity increases with increasing σr

2 in the frequency range 100- ≈105 Hz, 
whereas it decreases in the range ≈105–108 Hz, and the dispersion and attenuation occur over a broader 
frequency band. Keeping constant σr

2 and the scale range (see black and magenta curves), the P-wave ve-
locity curve shifts toward the low frequency end with increasing r0, indicating that this radius only affects 
the relaxation frequency of WIFF, and not the degree of anelasticity. With increasing scale range, the dis-
persion (and attenuation) curves almost overlap in the case of a Gaussian distribution with the same σr

2 
and r0 (brown and black curves in Figure 5 in comparison with Figure 3). However, the velocity decrease is 
much more pronounced in the case of the exponential distribution (brown and black curves in Figure 3a). 

This is because the difference between volume fractions of the inclusion 
phases is obvious in the latter (brown and black curves with triangles in 
Figure 2) compared with the former (brown and black curves with trian-
gles in Figure 4).

3.2. Comparison With a Self-Similar Medium

In a self-similar rock, the volume fractions are (Rieu & Perrier, 1998)


 

    
 

min
,

max
1 ,

D DE f

I F
rv
r

 (20)

where rmin and rmax are the minimum and maximum inclusion radii, re-
spectively. DE is the Euclidean dimension, and Df is the fractal dimension 
satisfying 2 < Df < 3.

A comparison of the results for self-similar, exponential and Gaussian 
distributions is given in Figure 6, according to the properties of Table 1. 
The results show that when each added inclusion phase has nearly the 
same volume fraction, that is, Df = 2, θ = 100 and σr

2 = 4, the P-wave 
velocities and attenuation are almost the same. For the self-similar 
distribution, the range of anelasticity of Df = 2.99 is broader than that 
of Df < 2.99. For the exponential distribution, the range of anelasticity 
of θ  =  1 is broader than that of θ  <  1. For the Gaussian distribution, 
the range of anelasticity of σr

2 = 4 is broader than that of σr
2 < 4. The 

difference in the results is related to the different parameter set (θ, σr
2, 

Df), while the low- and high-frequency velocities coincide for the three 
distributions.
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KbH (GPa) GbH (GPa) KbI (GPa) GbI (GPa) ϕH0 (%) ϕI0 (%) κH D κI D Kf (GPa) ρf (kg/m3) η Pa•s

17 15 1.7 1.5 15 8 0.01 1 2.5 1040 0.001

Table 1 
Rock Frame and Fluid Properties

Figure 3. (a) P-wave velocity and (b) 1/Q as a function of frequency for 
different values of θ.
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Figure 5. (a) P-wave velocity and (b) 1/Q as a function of frequency for different mean value of r0, variance σr
2 and 

scale range.

Figure 4. Volume fractions of the inclusion phases as a function of inclusion radius for different mean value of r0, 
variance σr

2 and scale range.
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4. Examples
4.1. Laboratory Measurements in Tight Rocks

The experimental data of two tight-rock samples reported by Li et al. (2020) are considered to illustrate the 
proposed theory. Two samples are from the He-8 section of the Ordos reservoirs, where one of them is a 
tight carbonate sample with porosity 5.34% and permeability 0.1 mD, which is mainly composed of 20.5% 
quartz, 18.2% clay, 10% dolomite and 42.7% calcite, and the other is a tight sandstone with porosity 4.50% 
and permeability 0.28 mD, with 32% quartz, 29% soda feldspar, 12% k-feldspar and 20.3% clay minerals. For 
both the dry and fully water saturated conditions, these measurements were performed in a frequency range 
from 1 Hz to 1 kHz at room temperature by using the forced-oscillation method (Li et al., 2020; Spencer, 
1981; Yin et al., 2017, 2019). The measured moduli dispersion of both samples apparently occurs in the 
whole measurement frequency band, and their porosities are measured by using a helium porosimeter (Li 
et al., 2020). In the experimental setup, the confining and pore pressures are set to 20 and 2 MPa, respec-
tively. The bulk modulus, density and viscosity of water in the experiments are 2.25 GPa, 980 kg/m3 and 
0.001 Pa•s, respectively.

Microcracks and dissolved pores are observed in thin section of the tight-carbonate sample (see Figure 1b 
of Li et al., 2020), and these soft components with high compressibility are considered as inclusions (Borgo-
mano et al., 2017). In contrast, the main matrix with intergranular pores can be treated as the host medium. 
According to Li et al. (2020), the dissolved pores with different sizes were observed in the thin section of 
the tight carbonate sample, in the range of 0.01–0.5 mm. Moreover, a larger crack of about 2 mm can be 
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Figure 6. (a) P-wave velocity and (b) 1/Q as a function of frequency for self-similar, exponential and Gaussian 
distributions of the inclusions. The blue dashed and solid curves represent Df = 2 and 2.99, respectively, the red dashed 
and solid curves represent θ = 100 and 10−2, respectively, and the black dashed and solid curves represent r0 = 10−3.5 and 
σr

2 = 4.0, and r0 = 10−3.5 and σr
2 = 0.5, respectively.
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observed in the thin section analysis. We slightly extend the range of the observed soft constituents, assuring 
that most potential inclusions can be incorporated. The range of the inclusion radii is set as (0.004–4) mm. 
The total inclusion volume, assumed to be 0.1, is associated with the volume ratio of the soft constituents 
containing microcracks and dissolved pores. The basic properties of the tight carbonate sample are given 
in Table 2.

A comparison between the measurements and predictions of the IPM model and Gassmann theory is 
shown in Figure 7. The results show that the estimated value of the Gassmann theory (the measured dry-
rock bulk modulus Kb = 38.44 GPa is use in this theory) is smaller than the measured bulk modulus, which 
exceeds the experimental errors. This could mean that the Gassmann theory is not precise for low-porosity 
and low-permeability rocks. A possible explanation is that in the experiments, there is not enough time 
in a wave period for pore fluid pressure to equilibrate due to the low porosity and permeability of the car-
bonate sample. Another reason can be the presence of a chemical interaction between the frame and the 
fluid, which violates the hypothesis of the Gassmann theory (Mavko et al., 2009). To avoid the uncertainty 
of the laboratory measurements, we have to estimate the dry-rock elastic moduli from undrained meas-
urements (at the low-frequency limit, where the saturated rock is relaxed) by using the inverse Gassmann 
Equation (Sun & Gurevich, 2020). The inverted dry-rock bulk (shear) modulus is 46.17 (25.12) GPa. With 
the values Df = 2.67, θ = 0.02, r0 = 10−3.8 and σr

2 = 2, the IPM model provides a good agreement with the 
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Figure 7. Experimental bulk modulus of the water-saturated tight carbonate (red circles) at a differential pressure of 
about 18 MPa, compared to the Gassmann prediction (blue line), and those of the self-similar (black line), exponential 
(brown line) and Gaussian (pink line) models.

Samples Ks (GPa) KbH (GPa) KbI (GPa) ϕH0 (%) ϕI0 (%) κH mD κI mD

Carbonate 72 62.6 6.8 4.82 10 0.09 0.9

Sandstone 31 20.9 0.6 4.33 10 0.27 5.7

Table 2 
Properties of Tight Carbonate and Sandstone Samples
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measurements, where these values are obtained by a least-square regres-
sion. Note that the theoretical bulk modulus departs from the measured 
one at approximately 1 kHz. The reason of this difference may be that 
the inclusions in this sample are not characterized by the three distribu-
tions. Another reason is that the measured frequency range is relatively 
narrow, and there may be wave dispersion beyond this range (this behav-
ior has been observed in measurements performed by Yin et al. [2017]). 
The attenuation is present at frequencies in the range 10 Hz–1 kHz (see 
Figure 7b).

For the sandstone sample, microcracks and grain contacts at different 
scales can be found in the thin section (see Figure 1a of Li et al., 2020), 
and these soft components are considered as inclusions. The total inclu-
sion volume fraction is set as 0.03. The main matrix containing inter-
granular pores is considered as the host medium. The basic properties 
of the tight-sandstone sample are given in Table  2. Figure  8 compares 
the measurements with the predictions of the IPM theory and Gassmann 
theory. It is apparent that the measured bulk modulus monotonously 
increases with increasing frequency, implying that wave dispersion oc-
curs in the whole (measured) frequency band. The Gassmann value is 
slightly higher than the measured value at 1  Hz, where the measured 
Kb is 18.99 GPa (this can be attributed to a weakening effect of the fluid 
on the grain contacts (Murphy et al., 1984), but the result is acceptable 
in view of the experimental errors of 3%–5%. The inverted bulk (shear) 
modulus from undrained measurements is 16.2 (5.26) GPa. Compared 
with the carbonate sample (Figure 7), the frequency range of anelasticity 
is broader, which implies that the scale range of the fabric structures (in-
clusions) in the sandstone is wider. Hence, this range is taken (0.001–10) 
mm. The predicted results of the IPM theory provide a better match with 
the measurements for Df = 2.57, θ = 0.03, r0 = 10−4.8 and σr

2 = 4, than 
those of the Gassmann theory. In addition, the predicted attenuation is 
stronger at frequencies of 1 Hz−1 kHz (see Figure 8b).

4.2. Laboratory Measurements for Fox Hills Sandstone

In this section, the IPM theory is applied to experimental data of Fox Hills sandstone with a porosity of 
25.6% and a permeability of 9.48 mD. The matrix of the sample is dominated by quartz and clay minerals 
(mixture of kaolinite, chlorite, and smectite) (Bathija et al., 2009; Hasanov et al., 2019). Its elastic properties 
were measured by Batzle et al. (2006) from 5 to 800 Hz by using a forced deformation system and pulse 
transmission, where an extensional stress-strain measurement has been used to obtain low-frequency data 
(more details of the experimental procedure can be found in Batzle et al., 2006). The fluid used in the exper-
iment is glycerine (63°C) with bulk modulus of 4.15 GPa, density of 1,235 kg/m3 and viscosity of 0.0813 Pa•s 
(Yin et al., 2017). The inclusions are soft components composed by uncemented or loose-contact granular 
materials, and the host medium is a consolidated sandstone. The total inclusion volume fraction is 0.15. The 
basic properties of Fox Hills sandstone sample are listed in Table 3.

The comparison between measurements and predictions is illustrated in Figure 9. The results show that the 
experimental P-wave velocity at low frequencies is significantly less than that predicted by the Gassmann 

theory (the measured dry-rock bulk modulus Kb is 5.62  GPa). This be-
havior can also be observed in Figure 10a of Sun and Gurevich (2020). 
They showed that the measured bulk modulus at the pressure 3.5 MPa 
is significantly smaller than that estimated from the Gassmann theory at 
3.5 MPa, and considered that the weakening of the saturated rock is relat-
ed to the nonmechanical interaction with the glycerin. Hence the nonme-
chanical interaction between the rock frame and glycerin was considered 
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Figure 8. Experimental bulk modulus of the water-saturated tight 
sandstone (red circles) at a differential pressure of about 18 MPa, 
compared to the Gassmann predictions (blue line), and those of the self-
similar (black line), exponential (brown line) and Gaussian (pink line) 
models.

Samples
Ks 

(GPa)
KbH 

(GPa)
KbI 

(GPa)
ϕH0 
(%)

ϕI0 
(%)

κH 
mD

κI 
mD

Sandstone 37.2 6 0.4 25.4 27 8.2 82.1

Table 3 
Properties of Fox Hills Sandstone Sample
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to explain the discrepancy between the Gassmann's prediction and the data. The inverted dry-rock bulk 
(shear) modulus is 3.844 (1.256) GPa based on undrained measurements. By comparing Figure 7a with 
Figure 9a, it is shown that the measured dispersion is similar to that of the tight carbonate at seismic fre-
quencies. In addition, Figure 9a shows that there is dispersion in the sonic band as well (103–105 Hz), which 
indicates that Fox Hills sandstone has a fabric structure (<0.004 mm) compared to the tight carbonate. The 
fabric structure scale is set in the range (0.002–2) mm. The IPM theory reasonably describes the P-wave 
velocity with Df = 2.72, θ = 0.03, r0 = 10−5 and σr

2 = 4.

4.3. Field Data for Marine Sediments

Marine sediments considered by Zhou et al. (2009) were collected at 20 different sites around the world 
and their sound speed and attenuation were measured in the frequency range of 50  Hz–400 kHz with 
different approaches (e.g., Gorgas et al., 2002; Potty et al., 2003; Thorsos et al., 2001). The P-wave velocity 
can be calculated as P a wV R V  (Ra is the sound speed ratio, and Vw = 1,526 m/s is the water sound speed), 
and the attenuation is      /s Pf QV . The complexity of sedimentary environment causes a diversity 
of sediments, such as silt, sand-slit mixture, fine sand, medium sand and coarse sand. The grain bulk mod-
ulus is 32 GPa according to Zhao et al. (2009). The porosities and permeabilities changed from 0.36 to 0.47 
and from 0.65 × 10−11 to 10 × 10−11 m2, respectively. According to theoretical considerations and experi-
ments (Isakson & Neilsen, 2006), soft sediments are composed of grain aggregates with different degrees of 
compaction, porosities higher than 0.5 and permeabilities higher than 10 D, embedded into consolidated 
sands, whose porosity and permeability are 0.395 and 8 D, respectively. The dry-rock bulk (shear) moduli 
of the host medium and inclusions are 0.5 (0.03) and 0.22 (0.028) GPa, respectively, whereas the total in-
clusion volume fraction is 0.0476. Figure 10 shows the P-wave velocity and attenuation compared with the 
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Figure 9. Experimental P-wave velocity of the glycerin-saturated Fox Hills sandstone (red circles) compared to the 
Gassmann prediction (blue line), and the self-similar (black line), the exponential (brown line) and the Gaussian (pink 
line) models.
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 theoretical predictions. There is wave anelasticity in the full frequency range, and the Biot model cannot 
describe the measurements. When the scale range of the inclusion radius is (1.5–15,000) mm, the present 
model provides a better fit than the Biot theory for Df = 2.88, θ = 1, r0 = 0.1 and σr

2 = 1. It can be inferred 
that a larger fabric structure (>1 mm) exists in the marine sediments.

5. Discussion
5.1. Adding Order of the Inclusion

In the classic DEM theory, the effective moduli of the composite medium are independent of the number 
of additions, when the addition number is sufficiently large. Similarly, the P-wave velocity and attenua-
tion predicted from the IPM model approach the same values at the low- and high-frequency limits, with 
increasing number of inclusion additions. In contrast, the effective moduli depend on the order in which 
pores and cracks are added into the host (Han et al., 2016; Mavko et al., 2009; Tran et al., 2008). Hence, the 
order of inclusion addition affects the modeling results. To analyze this effect, the self-similar porous me-
dium is selected as an example, where Df is 2.77 and the scale of inclusion radii is in range (0.001–10) mm. 
The other properties are given in Table 1. By adding the inclusions from the small to large and randomly, the 
P-wave velocity and attenuation as a function of frequency are shown in Figure 11. The velocities are almost 
the same, while the attenuation curves are significantly different in the range 103–108 Hz, which is because 
the anelasticity effect at each step/addition depends on the order of addition. The wave-velocity dispersion 
is an integral/accumulative result of the velocity dispersion of previous additions, but it is less dependent on 
the order. On the other hand, the attenuation mainly reflects the anelasticity due to a single addition, not the 
accumulative effect, and is more dependent on the order. In this study, the inclusions are added into the host 
medium from small to large, according to the scales of the elastic wave observations, and a similar approach 
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Figure 10. Full frequency-range measurements in sandy sea-bottoms, and predictions of the self-similar (black line), 
the exponential (brown line) and Gaussian (pink line) models. The symbols represent datasets from different authors 
(Zhou et al., 2009).
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can be found in Bailly et al. (2019), who incrementally added pores (plug 
scale), cracks (outcrop scale) and fractures (seismic scale) into the host.

5.2. Assessment of the Modeling Result

The present theory gives the description for the measurements in labora-
tory and field experiments, and there is a discrepancy in Figures 7–9, that 
is, the results at low frequencies are not consistent with the Gassmann 
theory by using the measured bulk modulus. The reason can be a chemi-
cal or non-mechanical interaction between the rock frame and the fluid. 
In particular, if the saturating fluid is highly viscous, such as glycerin 
or heavy oil, their bulk modulus depends on frequency. The values of 
the fractal dimension Df of this study are in agreement with the report-
ed results for sandstones (2.55–2.89) and carbonates (2.27–2.75) (Kro-
hn,  1988). To further analyze the coherence of the model, the volume 
fractions of the inclusions as a function of inclusion radius is given in Fig-
ure 12. Compared with Figure 9, there is a small difference between the 
results of the self-similar, exponential and Gaussian distributions, while 
the fractions of inclusions at the same radius are different. It is shown 
that different distributions may lead to the same wave anelasticity.

Similar to what was discussed in Ba et al. (2011), the proposed model ana-
lyzes the effects of local fluid flow at different scales induced by compres-
sional waves, which causes significant P-wave dispersion and attenuation, 
but the S-wave dispersion mechanism is not incorporated here. The local 
fluid flow induced by S waves is different from that induced by P waves 
(Quintal et al., 2012), and their effects will be treated in a future study.

6. Conclusions
A theory of wave propagation in an infinituple-porosity media (IPM) is 
presented for the scale-dependent fabric structures, based on a DEM theo-
ry, where the governing Equations are derived from Hamilton's principle. 
The fabric or texture sizes are characterized by the exponential, Gaussian 
and self-similar distributions and the results show that broadband dis-
persion and attenuation are mainly related to the parameter θ, variance 
σr

2 and fractal dimension Df, respectively. Comparison with experimental 
laboratory data with different porosities and marine sediments gives a 
reasonable agreement. The modeling with the IPM theory yields different 
fabric scales, for example, (0.004–4) mm for a tight carbonate, (0.001–10) 
mm for a tight sandstone, (0.002–2) mm for Fox Hills sandstone and 
(1.5–15,000) mm for marine sediments. The theory provides an effective 
approach to describe the anelasticity of rocks with fabric structures at 
different scales and is helpful for gaining new insights into interpreting 
the observed broadband wave anelasticity in laboratory and field data. 
The IPM model proposed in this work can be validated against a serial of 
systematic numerical simulations by the numerical modeling approaches 
(e.g., Quintal et al., 2011; Wenzlau & Müller, 2009), which is highly valu-
able and should be considered in a future study.

Data Availability Statement
The measured data can be found in Li et al. (2020), Batzle et al. (2006), 
and Zhou et al. (2009), and the data of the modeling results of the three 
distributions in: https://zenodo.org/record/4147112#.X5ljU3gzZ24.
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Figure 11. (a) P-wave velocity and (b) attenuation as a function of 
frequency, by adding the inclusions from the small to larger (blue line) and 
randomly (red line).

Figure 12. Volume fractions of the inclusions as a function of inclusion 
radius, with Df = 2.72, θ = 0.03, r0 = 10−5 andσr

2 = 4.

https://zenodo.org/record/4147112#.X5ljU3gzZ24
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