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ABSTRACT 
 
Zhou, J., Ba, J., Castagna, J.P. and Carcione, J.M., 2019. Application of trace-based 
spectral principal component analysis method for seismic thin-layer thickness delineation. 
Journal of Seismic Exploration, 28: 551-576. 

 
Spectral decomposition of a 3-dimensional reflection seismic volume generates 

large volumes of spectral data in the form of time-frequency analysis at every seismic 
signal location. Conventional spectral principal component analysis (PCA) compresses 
the multi-dimensional spectral data exclusively on amplitude maps at interpreted seismic 
horizon. This overlooks the time-variant nature of spectral amplitudes. Hence, it is 
difficult to estimate thin-layer thickness variations directly from the conventional 
horizon-based spectral PCA (HSPCA) results. A trace-based spectral principal 
component analysis (TSPCA) method is proposed for seismic thin-layer thickness 
delineation. Compared to HSPCA, TSPCA calculates spectral principal components (PCs)  
within a time window over the targeted seismic event on a trace-by-trace basis. 
Trace-based spectral PCs are assumed independent, i.e., as amplitude responses from 
reflection events with different frequency characteristics. A rotation of PC coefficients 
following the Varimax criterion is proposed to automatically interpret the three most 
significant spectral PCs as related to (1) reflection amplitude determined by rock 
impedances, (2) tuning of a pure even-reflection pair, or (3) tuning from a pure 
odd-reflection pair. The latter two types of tuning-related amplitude are both governed by 
thin-layer thickness and have different frequency responses. Results on synthetic wedge 
models of pure odd- and even-reflection pair thin layers show that the trace-based 
spectral PCs show a distinct relationship to thin-layer thickness. Comparing spectral PC 
images calculated on a geologically complex 3D model after HSPCA and TSPCA 
methods, we conclude that TSPCA has superior capability for precise thickness 
delineation, especially for subtle thickness variations in the model. 
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INTRODUCTION 
 

Due to the complex propagation behavior of seismic waves in anelastic 
Earth media, seismic reflection signal has limited time- and frequency- 
resolutions. As targets become increasingly thinner, seismic signal 
processing methods need to overcome the problem of inadequate resolution 
before a robust thin-layer thickness estimation can be made. 

  
Spectral decomposition is a popular seismic signal processing and 

interpretation technique that can potentially improve seismic resolution 
(Cohen, 1989; Gao et al., 1999; Gholami, 2013). It has been widely applied 
to interpret frequency-dependent seismic responses, e.g. fluid-induced 
reflectivity variation and lithology changes (Castagna et al., 2003; Korneev 
et al., 2004; Sinha et al., 2005; Chen et al., 2008; Williams and Chadwick, 
2012; Carcione et al., 2018). More commonly, based on the understanding 
that narrow-band seismic data better delineate the seismic “tuning” pattern at 
individual frequencies, features of specific thickness that correspond to the 
tuning frequency is highlighted in the iso-frequency images (Partyka et al., 
1999). However, one of the problems after the spectral decomposition is that 
the volume of seismic data increases and interpreting the spectral volumes 
becomes time consuming. Moreover, the choice of the frequency that best 
represents the true geology can be arbitrary (Marfurt and Kirlin, 2001). 
Using specifically designed seismic attributes extracted from spectral data 
volumes, one can delineate some geologic features. For example, using 
peak-amplitude, peak-frequency and coherence attributes gives a better 
visualization of channel features (Marfurt and Kirlin, 2001; Liu and Marfurt, 
2007), and amplitude ratios of frequency components are indicative of 
thickness variations (Khare and Martinez, 2008; Nowak et al., 2008). 
However, much of the information in the spectral volumes is not exploited 
by these spectral attribute methods. 

  
Taking advantage of the clustering behavior in spectral data volumes 

can reduce data volumes without losing vital information (Wang, 2012). 
Principal component analysis (PCA) is an effective multi-variant statistical 
method that compresses high-dimension data while removing random noises 
(Jolliffe, 2002; Jolliffe and Cadima, 2016; Chen et al., 2017). It reduces data 
redundancy by projecting input data to directions in hyperspace where 
variations are most significant. Firstly, PCA of spectral data from 
time-frequency analysis preserves most variances in spectrally-decomposed 
3D data volumes (Roden et al., 2015). On the other hand, spectral data 
projected, based on eigenvectors, are orthogonal-linear combinations of 
individual frequencies ranked by the variance of the data that they account 
for, suggesting that each PC is independent (Guo et al., 2009). Due to the 
superiority of orthogonal attributes, PCA could aid in multiple regression, 
and provides independent visualizations of the geology, with PC potentially 
highlighting different geological features (Honorio et al., 2014; Zhou et al., 
2014). Conventional horizon-based spectral PCA takes spectral amplitude 
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from sample points exclusively along a seismically picked 2D horizon, and 
process all points altogether regardless of their spatial distribution. On one 
hand, this arrangement focuses on the overall amplitude-distribution trend 
along the picked seismic event, possibly representing the targeted thin layer. 
In this sense, spectral PCA essentially acts as a compressor and noise filter 
for high-dimensional spectral data. On the other hand, using only spectral 
amplitude at a 2D horizon limits the ability of PCA for extracting 
time-variant information embedded in the original spectral data (Guo et al., 
2009), for example layer thickness (Partyka et al., 1999). Furthermore, 
relying heavily on amplitude at picked horizons requires the error in horizon 
picks to be relatively small, which is not very common in cases with 
complex geology, where the horizontal heterogeneity is strong. 

  
In this work, a trace-based spectral PCA (TSPCA) algorithm is 

proposed for thin-layer thickness delineation. Compared to the conventional 
horizon-based spectral PCA (HSPCA), TSPCA takes advantage of the 
correlation relationships between spectral iso-frequency traces. The 
trace-based PCA of spectral amplitude is essential to decompose the original 
signal into independent responses of rock impedance contrasts and thin-layer 
tuning effects based on the characteristic frequencies for each trace. In 
addition, Varimax rotation of PC coefficients is explored as a tool for 
automated interpretation of spectral PCs. The Varimax criterion (Kaiser, 
1958), when applied in seismic signal analysis, aids in improving data 
spikiness, zero-phase correlation, and image focusing (Wiggins, 1978; Levy 
and Oldenburg, 1987; Fomel et al., 2007). In this workflow, using 
Varimax-rotated PC coefficients as a function of frequency enables 
automated interpretation of spectral PCs and differentiation of amplitude 
responses with different frequency characteristics. 

  
The paper is organized as follows. First, the TSPCA approach is 

compared against the conventional HSPCA for thin-layer thickness 
delineation. Then, the Varimax criterion is demonstrated as an aid in 
interpreting spectral PCs for individual traces, which is essential for 
automated PC image generation. Effectiveness of the TSPCA in thickness 
delineation is tested using two wedge models and a geologically complex 3D 
model consisting of an incised valley and turbidite channel to show its 
superior performance over conventional HSPCA.  
 
 
THEORY AND METHODS 

 
A. Principal Component Compression and Decomposition 
 

PCA for data compression is often considered a low-rank 
approximation of the high-redundancy original dataset (Chen et al., 2017; 
Sun and Du, 2018). One of the common algorithms of PCA is the covariance 
method. In this algorithm, the key process is the eigendecomposition of the 
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covariance matrix of input dataset (D). Since the correlation matrix is 
equivalent to the covariance matrix normalized by the mean values of 
variables, it is used here for simplicity. 

  
The correlation matrix (r) is always diagonalizable. Using 

eigendecomposition, the r matrix can be expressed as the sum of its 
eigenvalues (λ) multiplied by the corresponding eigenvectors (V) and the 
transpose of each eigenvector (VT ):  

 
1
λ

=

=∑
m

T
i i i

i
r VV  ,                        (1) 

 
where m indicates the number of variables. Ranking eigenvalues from high 
to low indicate the largest and smallest amount of variance represented by 
each principal component (PC). Usually PCs associated with the largest few 
p eigenvalues (p << m) are large enough to be significant. The original r 
matrix can be approximated by r̂  where non-significant terms are excluded 
without losing much variance:  
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By incorporating the scalar λ into the two matrices V and VT, (2) can be 
rewritten as: 

                     ˆ ˆˆ Tr RR r= ≈     (3) 
where  
                     ˆi i iR Vλ=  (4) 
 
and i ranges from 1 to p. The value of p depends on the degree of 
redundancy in the dataset, which will be discussed in a following section. 
  

The second application of PCA is for decomposing the original dataset 
into a selected number of subsets based on the most significant directions in 
data hyperspace. Because PCs are geometrically orthogonal, they are 
considered independent of each other (Sun and Du, 2018). Individual PCs 
are calculated by projecting the standard-score form (z-score) of the original 
data using VT as coefficients: 

  
                     T

i iPC V z=  ,          (5) 
 
where i ranges from 1 to p. However, there is one apparent problem for the 
principal component decomposition. Directly associating PCs to data in real 
measurement space is often difficult (Guo et al., 2009). This problem will be 
addressed in sections below.  
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B: Horizon- and Trace- Based Spectral PCA 
 

Conventional spectral PCA treats amplitudes from a pre-selected 2D 
seismic horizon at different frequencies as different input variables. By 
calculating the most significant spectral PCs, variations in the spectral 
amplitudes are extracted while random noises are removed. Fig. 1 illustrates 
the workflow of the conventional horizon-based spectral PC analysis 
(HSPCA). The general procedure can be summarized in the following steps: 

 

 

Fig. 1. Conventional HSPCA method. 
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(3) Balance iso-frequency amplitudes from different frequencies to 
remove the wavelet shape influence on amplitude (Liu and Marfurt, 2007); 

(4) Sort all points from each 2D iso-frequency horizon into 1D strings, 
then compile all iso-frequency amplitudes as matrix D; 

(5) Perform PCA on matrix D, then reorganize outputted p spectral PCs 
back to p 2D PC horizons. 

  
One advantage of this algorithm is that it only needs one PC analysis 

for each seismic horizon, hence the efficiency of calculation is relatively 
high. Statistically, it makes no difference how spectral amplitudes are 
inputted into matrix D before PCA. However, performing PCA to 
amplitudes from only one time-sample at a pre-selected seismic horizon 
ignores useful information hidden in spectral amplitude variation as a 
function of time, including layer thickness, which is an important reason for 
time-frequency analysis in the first place. To deal with with this issue, a 
trace-based spectral PCA (TSPCA) is proposed here to take advantage of 
both the time- and frequency- domain information carried in iso-frequency 
amplitude data generated by spectral decomposition.  

Fig. 2. TSPCA method. 
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Different from the conventional HSPCA, the TSPCA algorithm 
calculates the PC outputs on a trace-by-trace basis. Fig. 2 illustrates the 
workflow of the TSPCA. The general procedure can be summarized as: 

 
(1) Define a time window whose center is located at the seismic 

interface of interest; 
(2) Extract iso-frequency traces from m iso-frequency amplitude cubes 

outputted from any spectral decomposition algorithm; 
(3) Balance spectral amplitudes at different frequencies to remove the 

wavelet shape influence (Liu and Marfurt, 2007); 
(4) Compile balanced spectral traces into matrix D; 
(5) Perform PCA on matrix D, then reorganize outputted p spectral PCs 

back to 1D PC traces. Record PC amplitudes at the center of the windowed 
trace to the corresponding points at “x” and “y” location of the p PC horizon 
images.  

(6) Repeat steps (1) through (5) until all points on the horizon are 
processed.  
 
 
C: Interpretability of TSPCs by Varimax Rotation 

 
One of the reasons to perform spectral PCA on a trace-by-trace basis is 

that it enables interpretation of time-frequency data directly for individual 
traces. This is achievable via interpreting PC coefficients (V) and individual 
corresponding outputted spectral PC amplitudes. Based on (3), r̂  is 
equivalent to the R̂  matrix multiplied with its transpose. However, this 
equation is not necessarily unique. There are an infinite number of 
orthogonal p-by-p matrices X, where 

  
                    TXX I=       (6) 
that satisfies: 

 ˆ ˆˆ ˆ( )( )T T
v vr RX X R r= = . (7) 

 
Here X is effectively a rotation of the R̂  matrix. Each X corresponds to a 
specific rotation to R̂ . The purpose of rotating matrix R̂  is to make it 
easier for interpretation of each PC in (4).  

 
The Varimax criterion is one of the most common methods for 

orthogonal matrix rotation. The aim is to rotate the matrix so that variation 
in all the columns is as large as possible. The Varimax criterion is selected 
because it preserves the orthogonality of the R̂  matrix, hence it is 
reversible. A general expression of the Varimax criterion (Kaiser, 1958) is 
given as: 
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v j i j iij ij
R R R

p= = = =

⎛ ⎞
= Λ − Λ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  , (8) 

 
where Λ indicates variance. Generally, coefficients in R̂  obtained from the 
covariance matrix needs to be scaled before rotation. However, since our r̂  
matrix is created by using correlation coefficients, which is a normalized 
covariance, the scaling is already done. 
 

There are multiple methods capable of solving for ˆvR . One of the 
conceptually simple algorithms is to iteratively perform bivariate rotations. 
Each iteration begins with selection of two columns in the m-by-p R̂  
matrix, R̂ i and R̂ j, which defines a two-dimensional plane within the 
p-dimension hyperspace. Next, calculate the angle for rotation in the 
selected 2D plane using the following (Kaiser, 1958): 
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 where 

     
2 2ˆ ˆ
i jA R R= −

       and   

     
ˆ ˆ2 i jB R R=   .

 Then, rotating the selected two columns by multiplying R̂  to rotation 

matrix 
cos sin
sin cos

φ φ

φ φ

−⎛ ⎞
⎜ ⎟
⎝ ⎠

. Afterwards data points in this 2D plane have the 

highest variation along the new axes, i.e., are they are closest to the two axes. 

The iteration ends when rotations are performed on all 2
pC  pairs of columns, 

since i ranges from 1 to p, and j ranges from (i+1) to p. More iterations are 
performed until the Varimax criterion is met in all p dimensions (columns) 

in R̂ , i.e. a small enough rotation angle is reached. Another algorithm that is 
computationally more efficient is the singular value decomposition (SVD) of 

R̂  (Lawley and Maxwell, 1971). 
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Fig. 3. (a) PCA of input data. (b) Varimax rotation of PC coordinates. EV indicates 
eigenvector, dotted area indicates input data points. 

 
 
A schematic is shown in Fig. 3 to compare the procedure of (a) 

calculating the PC coefficients following (3) by eigendecomposition, and (b) 
rotating the selected p columns to obtain the maximum variation following 
(7). After the Varimax rotation, coefficients in ˆ

vR  have maximum 
variations along the new axes. Conceptually this means that the coefficients 
at all m frequencies scatter close to the new axes in the p-dimension 
hyperspace ( ˆvR ), suggesting a higher interpretability than the original 
coefficients in R̂  [Fig. 3(b)]. Driving R̂  values towards either zero or their 
maximum possible absolute value (scaled to unity) helps to differentiate, in 
rotated coordinates, variables with large absolute R̂  values, which are 
considered significant, and variables with near-zero R̂  values, which are 
not significant. 

  
Generally, rotating the PC coefficients only unveils patterns in the R̂  

matrix. No causal inferences can be made unless measurements (variables) 
in the original data have similar physical meanings. Because amplitude at 
different frequencies indicate seismic reflection strength as a function of 
frequency, the calculated spectral PCs are indicative of the reflection 
characteristics of the under-resolved thin layer, i.e., the layer thickness.  
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D: Trace-based Spectral PC and Thin-layer Thickness 
 

The PCA decomposes input data into several independent subsets, i.e. 
PCs, based on different correlation relationships or “clusters”. Assuming that 
the post-stack seismic data (s) is described by the convolution model (Liner, 
2004),  
 s r w n= ⊗ +   (10) 
 
where ⊗  denotes convolution, the clustering behavior between spectral 
traces may originate from the reflection series (r), the wavelet (w), or 
random noise (n). By assuming that noise is random in both the time and 
frequency domains, and no frequency notch is present in the wavelet, 
clustering in spectral traces could only be inherited from the reflectivity 
series. 
  

Spectral amplitude clusters in reflectivity series originate from seismic 
top-base interference (“tuning”) from thin layers and resultant frequency 
notches. A frequency notch forms when reflections from the top and bottom 
of a layer interfere destructively. The frequency of a spectral notch is 
directly determined by the travel time along the layer (Partyka et al., 1999). 
Similar to the tuning behavior in the time-domain (Widess, 1973; Kallweit 
and Wood, 1982; Chung and Lawton, 1995), the even- and odd-pair 
reflections have different tuning frequencies in the frequency domain. For 
the pure odd- and even-pair reflection pairs (reflection on top and bottom 
having the same magnitude) of time thickness ∆t, the most destructive 
frequency (Fdes) occurs at: 

  
(1) for top-base reflections with same magnitude and opposite signs, i.e., a 
reflection “odd pair”: 

                       des
NF
t

=
Δ

  ; (11a) 

(2) for top-base reflections with same magnitude and equal signs, i.e., a 
reflection “even pair”:  

                       
0.5

des
NF
t

+
=

Δ
 (11b) 

where N = 0, 1, 2, 3 etc. (Marfurt and Kirlin, 2001). 
 

It can be deduced from (11) that there are at least three significant 
frequency-dependent amplitude clusters in spectral amplitude datasets of an 
arbitrary thin layer: the non-notch-frequency related amplitude, odd-pair 
tuning related amplitude, and even-pair tuning related amplitude. They are 
assumed as the three most significant PCs from TSPCA for each trace. 
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Practically, in Step (5) of the TSPCA scheme in section B, the top three 
spectral PCs outputted are individually interpreted on the basis of rotated PC 
coefficients over frequency, and then recorded into three PC images 
designated for the three clusters. Particularly, the even- and odd-pair tuning 
related PCs are directly related to the thickness of the under-resolved thin 
layer, and hence could be used to estimate thickness.  
 
 

 
 
Fig. 4. Spectral decomposition of reflectivity (one 24-ms-thickness layer), 30 Hz wavelet, 
and signal. Time view of (a) reflectivity, (b) wavelet, and (c) signal. Spectral 
energy-density view of (d) reflectivity, (e) wavelet, and (f ) signal. Iso-frequency trace 
view of (g) reflectivity, wavelet, and (i) signal. 
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E. Validation of the TSPCA Method 
 

The TSPCA method is validated using an example that includes one 
layer of 24 ms time thickness that has the same-magnitude and opposite-sign 
reflection coefficient on top and bottom. The synthetic seismic signal is 
created by convolving the reflectivity with a 30 Hz Ricker wavelet [Fig. 
4(a)]. Spectral notches are apparent in both reflectivity and signal within the 
bandwidth of the wavelet as shown in the conventional energy-density [Fig. 
4(b)] and spectral-trace [Fig. 4(c)] display. Spectral traces at notch 
frequencies show poor correlation to those not at notch frequencies. This is 
represented by lower correlation coefficients at notch frequencies in Fig. 
5(b), which is determined by the layer time thickness (e.g., 42 Hz for 24 ms 
thin layer). Because the wavelet does not have any frequency notch [Fig. 
5(a)], the correlation matrix of the signal is almost identical to that of the 
reflectivity series within the bandwidth of the wavelet. 

 
 

 
 
Fig. 5. Spectral notch in amplitude spectrum of (a) reflectivity, (b) wavelet, (c) signal, 
and spectral correlation matrix of (d) reflectivity, (e) wavelet, and (f ) signal. 
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After eigendecomposition of the input spectral data following (2), the 
independency of two PCs is shown by comparing the reconstructed 
correlation matrix using only PC1 or PC2 (R1 and R2), following (3). The 
reconstructed r matrix using PC1 resembles the original correlation matrix 
(Fig. 6), confirming that PC1 contains most of the information in the original 
data. However, the PC2-reconstruced correlation matrix displays a different 
pattern to that of PC1 and the original correlation matrix. Due to its poor 
correlation to PC1 and low eigenvalue, PC2 could be removed as noise by 
conventional PC approximations approaches. However, it contains important 
information that is significant at notch frequencies, i.e., regarding the 
thickness of the layer. In addition, Fig. 7 shows that the reconstructed 
correlation matrix using un-rotated and rotated PC coefficients of the first 
two PCs are similar to the original correlation matrix. This suggest the PCA 
and Varimax rotation criterion have not added or removed information 
compared to the original data. Hence, further analysis based on rotated PC 
coefficients are representative of the original data. 
 

 
Fig. 6. Original and reconstructed spectral correlation matrix using one PC. (a) Original. 
(b) Reconstructed with only PC1. (c) Reconstructed with only PC2. 

 
 
The process of PC coefficient Varimax rotation is demonstrated in Fig. 

8. Compared to the original eigenvector and PC coefficients, the rotated PC 
coefficients show a more distinct variation, making any coefficient-based 
automated interpretation easier. In this example, PC1 represents amplitude 
of non-tuning frequencies, while PC2 shows amplitude at tuning frequencies 
in Varimax rotated PC coefficients [Fig. 8(d)]. In addition, in the general 
case of a thin layer that contains arbitrary reflection pairs on top and base, 
which can be considered as summation of a pure even- and odd-pair, PC2 
and PC3 are assumed to represent either the even or odd pair reflection 
amplitude based on their characteristic frequency. 

  
Finally, Fig. 9 compares the (a) original seismic, (b) iso-frequency 

amplitude traces, and (c) spectral PC traces calculated from (5). The peaks 
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of both PC1 and PC2 traces are located at the center of the thin layer, 
suggesting that the output TSPCA traces are truly an attribute of the layer 
property as opposed to a single reflection event. As shown by Fig. 8(d), the 
two output spectral PC traces are conceptually similar to the original signal 
processed using a bandpass filter. However, while the parameters of 
conventional band-pass filter are arbitrarily, the TSPCA is entirely data 
driven, and hence has a greater sensibility to thin-layer tuning behavior. 
Application of TSPCA for thin-layer thickness estimation is tested using the 
following examples. 

 
Fig. 7. Original and reconstructed spectral correlation matrix using un-rotated and rotated 
PCs. (a) Original. (b) Reconstructed with PC1 and PC2 in the original coordinates; 
(c) Reconstructed with PC1 and PC2 in the rotated coordinates after Varimax; 
(d) Residue of (a) and (b); (e) Residue of (a) and (c), (f ) Residue of (b) and (c).	  
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Fig. 8. Varimax rotation of PC Coefficients.  (a) Eigenvector.  (b) PC coefficients ( R̂ ). 
(c) Varimax-rotated PC coefficients ( ˆvR ).  (d) Rectified rotated PC coefficients ( ˆvR ). 
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Fig. 9. Trace-based PCA of signal. (a) Seismic signal from the one-layer model. 
(b) Iso-frequency traces.  (c) The first and second spectral PC traces. 

 
 
DATA TEST 
 
A. Wedge Models 
 

To demonstrate trace-based spectral PCA for thickness estimation, two 
wedge models with pure odd and even reflections are used. Fig. 10 shows 
the true impedance model and seismic reflection signal when the model is 
convolved with a 30 Hz Ricker wavelet. As time thickness approaches zero, 
the reflections from the top and base of the layer interfere and eventually 
become one new waveform, i.e., the first derivative of the original wavelet. 
After spectral decomposition and TSPCA, the PC trace and peak amplitudes 
of PC1 and PC2 are plotted against thickness (Fig. 11). 

  
Firstly, the PC1 trace shows a relative small amplitude variation, 

whereas the amplitude of the PC2 trace strongly increases as the thickness 
approaches zero (Fig. 11). This supports a previous assumption, based on 
Varimax-rotated PC coefficients, that the PC1 and PC2 traces represent the 
impedance contrast and the wedge thickness variation, respectively. The 
correlation between the PC2 amplitude and thickness is most apparent when 
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the layer thickness is less than the tuning thickness of the wavelet, where the 
top-base interference and waveform distortion occur. The maximum PC 
amplitude occurs at zero thickness, where the waveform distortion is high. 
When the thickness is large, the layer top-base interference no longer occurs, 
and the TSPCA amplitude is insensitive to thickness variation (Fig. 10). 

 
 

 
 
Fig. 10. Odd-pair wedge model and signal. (a) Synthetic model containing one wedge 
with lower impedance. (b) Seismic traces generated from the model using a 30 Hz Ricker 
wavelet.   

 
  
In the case of a model with an even reflection pair (Fig. 12), PC1 

remains relatively constant as a function of thickness, whereas PC2 shows a 
high amplitude around the tuning thickness (Fig. 13), differing from the odd 
case shown in Fig. 11. This might be the result that the waveform distortion 
appears around the tuning thickness when the top and base reflection have 
the same polarity, while at zero thickness, the waveform is essentially the 
same as the original wavelet with twice the amplitude.  
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Fig. 11. TSPCA of the odd-pair wedge model signal (a) PC1 traces. (b) PC1 peak 
amplitude. (c) PC2 trace. (d) PC2 peak amplitude. 
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Fig. 12. Even-pair wedge model and signal. (a) Synthetic model containing one wedge 
with medium impedance. (b) Seismic traces generated from the model using a 30 Hz 
Ricker wavelet. 
 
 
 
B. Complex-geology 3D Channel Model 
 

Fig. 14 shows a more complex 3D synthetic model representing 
thickness variations of a channel in a non-flat horizon. From the 
time-structure map, the horizon from which the channel is picked is located 
on top of a dome-like structure. The second complexity lies in that the 
channel is deeper compared to the rest of the channel and floodplain area, 
but does not have a larger thickness. Contrary to the conventional 
“rule-of-thumb” in seismic amplitude analysis, Fig. 14 shows that the 
amplitude of the channel at the picked horizon does not necessarily 
coincides with the true channel thickness from the impedance model. This is 
due to the low temporal resolution of the original seismic signal. Fig. 15 
shows in details the complex structure in the impedance model along two 2D 
profiles as shown in Fig. 14(a). 
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Fig. 13. TSPCA of the even-pair wedge model signal (a) PC1 traces. (b) PC1 peak 
amplitude. (c) PC2 trace. (d) PC2 peak amplitude. 
 

 
The seismic signal is then spectrally decomposed using a Fourier 

Transform (STFT) algorithm with a 120 ms time window. Amplitude of the 
conventional iso-frequency spectral images are affected by the complexity of 
the model (Fig. 16). Following a conventional HSPCA, the first three PCs 
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were selected because they have eigenvalues greater than 1, which is often 
considered a threshold. The calculated horizon-based spectral PC images 
(see Fig. 17) show that the three PC images present similar overall patterns, 
especially for PC1 and PC2. The PC3 image highlights the incised valley 
between xline 140-185. However, compared to the true thickness model and 
time structure map [Figs. 14(b) and (c)], it is apparent that the highlighted 
event results from the relative depth of the channel from the incised shape of 
the valley, instead of the thickness variation. 

 

 
Fig. 14. Complex 3D channel model in map view. (a) Time-structure map of the 
channel-containing horizon. (b) Signal amplitude at the horizon. (c) True channel 
thickness. 
 
 
 The result of the TSPCA using a 120 ms time window centered at the 
same horizon is illustrated in Fig. 18. Amplitude images of the first three 
spectral PCs show good overall continuity while conforming to the true 
channel thickness in the model. Spectral PC1 shows little amplitude change, 
similar as in the wedge models [Fig. 11(b) and Fig. 13(b)]. PC2 and PC3 
trends represent amplitudes from the even- and odd-pair models, 
respectively. High amplitude in the PC2 image between xline 70-80 and 
35-40 coincide with parts of the channel with thickness around the tuning 
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thickness, while the PC3 image exhibits high amplitude at zero thickness. 
Furthermore, Fig. 19 show true layer thickness associated with the channel 
cross-plotted with the TSPCA amplitudes. Mean peak amplitude of PC2 and 
PC3 show good correlation to thickness as observed in the pure even- and 
odd-pair reflection wedge model, respectively. Error bars show one standard 
deviation from the mean values. This slight scattering might due to low 
STFT resolution and slight structure complexity as shown in Fig. 15. 
  

Fig. 15. True model impedance along two 2D profiles in Fig. 14(a). (a) Line 1. (b) Line 2.  
 
 
One unique property of TSPCA is that it depends on the waveform 

shape, which indicates the degree of tuning and hence the layer thickness. 
This differs from the conventional HSPCA. Furthermore, after proper trace 
scaling and spectral balancing, only the reflectivity spectrum shape is 
evaluated. The TSPCA result can be independent of the trace amplitude 
variations which can be affected by wave propagation as well as impedance 
variations. On the other hand, when there are only subtle changes in 
waveform shape, a high signal-to-noise ratio of the input signal would be 
required for the TSPCA to be stable. In addition, high-resolution spectral 
decomposition would also be preferred to ensure clear PC images.  
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Fig. 16. Iso-frequency images of the channel. (a) 10 Hz. (b) 30 Hz. (c) 55 Hz. 
 

 
Fig. 17. HSPCA images of the channel. (a) PC1. (b) PC2. (c) PC3. 
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Fig. 18. TSPCA images of the channel.  (a) PC1.  (b) PC2.  (c) PC3. 

 
CONCLUSION 

 
This work proposes a novel trace-based spectral PCA approach for 

seismic thickness delineation of thin layers using spectrally decomposed 
seismic signals. Compared to the conventional horizon-based spectral PCA, 
which overlooks time-variant amplitude information in spectral data, the 
trace-based approach takes advantage of the correlation between spectral 
traces that is closely related to the thin-layer thickness. A Varimax rotation 
of the PC coefficients shows superiority in interpreting significant PCs 
automatically on a trace-by-trace basis. Results from two synthetic wedge 
models and a geologically realistic 3D synthetic model suggest that the 
TSPCA is capable of delineating true thickness variations below tuning 
more accurately compared to the conventional HSPCA, despite complex 
geology including subtle thickness change within channel.  
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Fig. 19. Trace-based spectral PC amplitude and true model thickness cross-plot. (a) PC1. 
(b) PC2. (c) PC3. 
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