Modeling wave propagation in cracked porous media with penny-shaped inclusions

Lin Zhang¹, Jing Ba¹, José M. Carcione², and Weitao Sun³

ABSTRACT

Understanding acoustic wave dispersion and attenuation induced by local (squirt) fluid flow between pores and cracks (compliant pores) is fundamental for better characterization of the porous rocks. To describe this phenomenon, some squirt-flow models have been developed based on the conservation of the fluid mass in the fluid mechanics. By assuming that the cracks are represented by isotropically distributed (i.e., randomly oriented) penny-shaped inclusions, this study applies the periodically oscillating squirt flow through inclusions based on the Biot-Rayleigh theory, so that the local squirt flow and global wave oscillation of rock are analyzed in the same theoretical framework of Hamilton’s principle. The governing wave-propagation equations are derived by incorporating all of the crack characteristics (such as the crack radius, crack density, and aspect ratio). In comparison with the previous squirt models, our model predicts the similar characteristics of wave velocity dispersion and attenuation, and our results are in agreement with Gassmann equations at the low-frequency limit. In addition, we find that the fluid viscosity and crack radius only affect the relaxation frequency of the squirt-flow attenuation peak, whereas the crack density and aspect ratio also affect the magnitudes of dispersion and attenuation. The application of this study to experimental data demonstrates that when the differential pressure (the difference between confining pressure and pore pressure) increases, the closure of cracks can lead to a decrease of attenuation. The results confirm that our model can be used to analyze and interpret the observed wave dispersion and attenuation of real rocks.

INTRODUCTION

It is commonly accepted that the presence of cracks in subsurface rocks plays an important role in seismic wave propagation. Cracks mostly refer to grain contacts or intragranular microfractures (Gurvich et al., 2009a), with a size of $10^{-3}–10^{-2}$, which not only affect the elastic properties of the fractured porous rock but also control the local fluid flow (LFF) between cracks and stiff pores, often called the squirt-flow mechanism (e.g., Müller et al., 2010; Carcione, 2014). Especially, this flow mechanism is the main contributor of wave dispersion and attenuation, which are highly affected by the lithology, pore structure, and fluid properties (e.g., Quintal et al., 2011; Yao et al., 2015; Khalid and Ahmed, 2016). Therefore, knowledge about the dispersion and attenuation dependence on fluid flow is important in seismic interpretation and reservoir characterization.

Many effective medium theories (e.g., Eshelby, 1957; Walsh, 1965; Mori and Tanaka, 1973; Kuster and Toksöz, 1974; Berryman, 1980; Norris, 1985; Thomsen, 1985; Song et al., 2016) and laboratory experiments (e.g., Fortin et al., 2007; Adam and Otheim, 2013; Wang et al., 2018; Yin et al., 2018) have been proposed to investigate the effects of cracks on the elastic properties of rocks. For example, using Eshelby’s tensor, David and Zimmerman (2011) calculate the elastic moduli of an isotropic solid containing a random distribution and random orientation of spheroidal pores. Although cracks represent an extremely small volume fraction (often less than 0.1%), their effects are important. Without considering the shape of the cracks, Shapiro (2003) provides analytical expressions for the elastic moduli of a cracked porous medium as a function of pressure, stiff porosity ϕ_s, and compliant porosity ϕ_c. Because the crack features...
are closely related to pressure variations, some researchers estimate the pore aspect-ratio distribution from the pressure dependence of dry velocities based on different theories (e.g., Cheng and Toksöz, 1979; Tran et al., 2008; David and Zimmerman, 2012). Although such methods can provide the crack characteristics, they do not describe the observed values of velocity dispersion and attenuation, which is due to the fact that there is no fluid exchange between the cracks and the porous background.

Classic approaches to handle this problem are mostly based on Biot’s poroelastic theory, which considers the global-flow mechanism in saturated porous media (Biot, 1956, 1962) and is equivalent to Gassmann (1951) in the low-frequency limit. However, it is not suitable to model the fluid flow between pores and cracks. Hence, several models have been proposed in the past few decades to address this local mechanism (e.g., Mavko and Nur, 1975; Murphy et al., 1986; Gurevich et al., 2009b). Nevertheless, both flow mechanisms coexist in a cracked porous medium. The squirt-flow Biot/squrt model theory has been developed by Dvorkin and Nur (1993), but the crack characteristics are not taken into account. Tang (2011) and Tang et al. (2012) add crack density and aspect ratio into their model, referred to here as the Tang model, and they find that the relaxation frequency and the amount of wave dispersion and attenuation are controlled by the crack aspect ratio and density, respectively. However, these squirt-flow models are not compatible with Gassmann’s theory. Models consistent with Gassmann’s theory include Berryman and Wang (1995), Pride and Berryman (2003), Gurevich et al. (2010), Carcione and Gurevich (2011), Ba et al. (2016), and Zheng et al. (2017). In Chapman et al. (2002), a microstructural model is derived, which is consistent with the Gassmann’s theory and the results of Endres and Knight (1997), hereafter referred to as the Chapman model. Pride et al. (2004) propose that the cracks can be treated as penny-shaped inclusions. Yao et al. (2015) add a flow term induced by the squirt flow into the original fluid modulus and modeled wave dispersion and attenuation by using the dynamic fluid modulus (the so-called DFM model).

Anisotropy caused by the presence of cracks was considered by Hudson et al. (1996), Chapman (2003), and Guo et al. (2018a, 2018b). Jakobsen et al. (2003) study the effects of pores and cracks on the elastic behavior by considering an arbitrary distribution of pores and fractures using the T-matrix approach. An alternative scheme based on the solutions of a single-crack and multiple-scattering theory is that of Galvin and Gurevich (2009). They analyze the elastic wave dispersion and attenuation in a porous medium containing aligned sparsely distributed penny-shaped cracks. Furthermore, Guo et al. (2017) investigate the relations between the elastic properties of rocks with intersecting fractures.

The purpose of this study is to model the fluid flow between the background pores and cracks, in which these can be treated as penny-shaped inclusions. Here, we assume that all of the cracks are isotropically distributed. The fluid-flow mechanism is based on the Biot-Rayleigh theory, which describes the fluid flow between two pore volumes using periodic oscillations (Ba et al., 2011, 2017). We derive the LFF governing equations from the above assumption and verify the effectiveness of the new model by comparison with the Biot, Chapman, Tang, and DFM models, and we analyze the effects of fluid viscosity and crack characteristics on wave propagation. Finally, the model results are compared with measurements on two tight sandstones.

WAVE-PROPAGATION EQUATIONS

Let us consider that cracks with different aspect ratios are randomly oriented distributed in the pore space (see Figure 1a) and fluid flows between cracks and pores. Here, cracks are described as penny-shaped inclusions into a host medium saturated with the same fluid (see Figure 1b). Similar to the Biot-Rayleigh theory, the cracked porous model is based on the following assumptions (Ba et al., 2011): (1) The penny-shaped inclusions are homogeneous and have the same radius \(R_0 \) and height \(h \); hence, the aspect ratio \(\gamma = h/(2R_0) \) of all the cracks is the same. (2) The size of the inclusions is much smaller than the wavelength, so that the cracks are in an isostress state, and we consider a unit cell as shown in Figure 1b. (3) The fluid flow between an inclusion and the host medium takes place mainly along the radial direction (see Figure 1c) because for a single crack in the model, the permeability in the radial direction is much higher than that along the axis (can be infinitesimal in the approximation; for a similar model, see Gurevich et al., 2010). (4) The fraction of inclusions is small.

Stress-strain relations

A cracked porous medium has been widely described by using the double-porosity model (e.g., Berryman and Wang, 1995; Ba et al., 2016; Zheng et al., 2017). As in Ba et al. (2011), the strain energy can be defined as

\[
2W = (\lambda_c + \mu) e^2 - 4\mu I_2 - 2\alpha_1 M_1 e(\xi_1 - \phi_1 \phi_2 \xi) - 2\alpha_2 M_2 e(\xi_2 + \phi_1 \phi_2 \xi) + M_1 (\xi_1 - \phi_1 \phi_2 \xi)^2 + M_2 (\xi_2 + \phi_1 \phi_2 \xi)^2,
\]

where \(e_{ij} = 1/2(\partial_i u_j + \partial_j u_i) \) are the solid strain components and \(e = \nabla \cdot \mathbf{u} \); \(\xi^{(m)} = -\nabla \cdot w^{(m)} \) is the increment of fluid content \((m = 1, 2\) represent the host medium and inclusions, respectively\); \(w^{(m)} = \Phi_m(U^{(m)} - \mathbf{u}) \), where \(U \) and \(\mathbf{u} \) are the fluid and solid displacements, respectively; \(I_2 \) is the second invariant of the solid strain; \(\phi \) is the total porosity, which is defined as \(\phi = \phi_1 + \phi_2 \), where \(\phi_1 \) and \(\phi_2 \) are the porosities of the host medium and inclusions, respectively, with \(\phi_m = \nu_m \Phi_{m0} \), where \(\nu_m \) and \(\Phi_{m0} \) are the volume fraction of the host phase and the porosity of a local area internal to the \(m \) phase; \(\mu \) is the shear modulus of the rock (composite); and \(\lambda_c, \alpha_1, \alpha_2, M_1, \) and \(M_2 \) are the stiffness coefficients (see Appendix A).
to the flow mechanism, described by periodic cylindrical oscillations, the fluid variation \(\zeta \) between the host medium and the penny-shaped inclusions is given by

\[
\zeta = \frac{1}{\phi_1} \left(1 - \frac{R_1^2}{R_2^2} \right),
\]

where \(R \) is the dynamic radius of the inclusion after wave-induced LFF.

From the energy (equation 1), the stress-strain relations are given by

\[
\tau_{ij} = 2\mu e_{ij} + \left(\lambda_1 e - \alpha_1 M_1 (\xi^{(1)} - \phi_1 \phi_2 \zeta) \right) - \alpha_2 M_2 \left(\xi^{(2)} + \phi_1 \phi_2 \zeta \right) \delta_{ij},
\]

(3a)

\[
P_{f1} = -\alpha_1 M_1 e + M_1 (\xi^{(1)} - \phi_1 \phi_2 \zeta),
\]

(3b)

\[
P_{f2} = -\alpha_2 M_2 e + M_2 (\xi^{(2)} + \phi_1 \phi_2 \zeta),
\]

(3c)

where \(\delta_{ij} \) is the Kronecker delta (i and j are the three Cartesian coordinates \(x, y, \) and \(z \)). \(\tau_{ij} \) is the total stress, and \(P_{fm} \) are the pore-fluid pressures in each phase.

Equations of motion

The equations of motion are based on Biot (1962) and Ba et al. (2011):

\[
\tau_{ij,j} = \rho \ddot{u}_i + \rho_f \dot{w}_i^{(1)} + \rho_f \dot{w}_i^{(2)},
\]

(4a)

\[
\left(-P_{f1}\right)_i = \rho_f \ddot{u}_i + m_1 \dot{w}_i^{(1)} + \frac{\eta \phi_{10}}{\kappa_1 \phi_1} \dot{w}_i^{(1)},
\]

(4b)

\[
\left(-P_{f2}\right)_i = \rho_f \ddot{u}_i + m_2 \dot{w}_i^{(2)} + \frac{\eta \phi_{20}}{\kappa_2 \phi_2} \dot{w}_i^{(2)},
\]

(4c)

where the comma preceding an index indicates the partial spatial differentiation, the dot above a variable denotes a partial time derivative, \(\eta \) is the fluid viscosity, \(\kappa_1 \) and \(\kappa_2 \) are the permeabilities of the host medium and inclusions, respectively, \(\rho \) and \(\rho_f \) are the densities of the porous aggregate and pore fluid, where \(\rho = (1 - \phi)\rho_i + \phi \rho_f \), where \(\rho_i \) is the grain density, and the coefficients \(m_1 \) and \(m_2 \) are defined as (Biot, 1962)

\[
m_1 = \frac{\tau_1 \rho_f}{\phi_1}, \quad m_2 = \frac{\tau_2 \rho_f}{\phi_2},
\]

Table 1. Input properties: \(K_s \), \(\mu_s \), and \(\rho_s \) are the bulk modulus, shear modulus, and density of the solid grains; \(K_f \), \(\mu_f \), and \(\rho_f \) are the bulk modulus, density, and viscosity of the fluid; \(\phi_{10} \), \(\phi_1 \), \(\phi_2 \), \(\kappa_1 \), and \(\kappa_2 \) are the matrix porosity, permeability, consolidation parameter, and tortuosity of the host medium; \(\phi_{20} \), \(\kappa_2 \), and \(\tau_2 \) are the matrix porosity, permeability, and tortuosity of the inclusions; and \(\epsilon \), \(\gamma \), and \(R_0 \) are the crack density, aspect ratio, and crack radius.

<table>
<thead>
<tr>
<th>Property</th>
<th>Figure 2</th>
<th>Figure 3</th>
<th>Figure 4</th>
<th>Figure 5</th>
<th>Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_s) (GPa)</td>
<td>37.9 (^a)</td>
<td>21.83 (^b)</td>
<td>37.9 (^a)</td>
<td>37.9 (^a)</td>
<td>37.9 (^a)</td>
</tr>
<tr>
<td>(\mu_s)</td>
<td>32.6 (^a)</td>
<td>24.5 (^b)</td>
<td>32.6 (^a)</td>
<td>32.6 (^a)</td>
<td>32.6 (^a)</td>
</tr>
<tr>
<td>(\rho_s) (kg/m(^3))</td>
<td>2650 (^a)</td>
<td>2637.8 (^b)</td>
<td>2650 (^a)</td>
<td>2650 (^a)</td>
<td>2650 (^a)</td>
</tr>
<tr>
<td>(K_f) (GPa)</td>
<td>2.25 (^a)</td>
<td>2.9 (^b)</td>
<td>2.25 (^a)</td>
<td>2.25 (^a)</td>
<td>2.25 (^a)</td>
</tr>
<tr>
<td>(\mu_f) (GPa)</td>
<td>1000 (^a)</td>
<td>1097 (^b)</td>
<td>1000 (^a)</td>
<td>1000 (^a)</td>
<td>1000 (^a)</td>
</tr>
<tr>
<td>(\rho_f) (kg/m(^3))</td>
<td>0.001 (^a)</td>
<td>0.001 (^b)</td>
<td>0.01</td>
<td>0.001, 0.01, 0.1</td>
<td></td>
</tr>
<tr>
<td>(\phi_{10})</td>
<td>0.25 (^a)</td>
<td>0.227 (^b)</td>
<td>0.25 (^a)</td>
<td>0.25 (^a)</td>
<td>0.25 (^a)</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>0.32 (^c)</td>
<td>0.32 (^c)</td>
<td>0.32 (^c)</td>
<td>0.32 (^c)</td>
<td>0.32 (^c)</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>0.1 (^a)</td>
<td>0.2</td>
<td>0.1 (^a)</td>
<td>0.1 (^a)</td>
<td>0.1 (^a)</td>
</tr>
<tr>
<td>(\kappa_1)</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(\kappa_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\tau_1)</td>
<td>2.4 (^a)</td>
<td>2.7026</td>
<td>2.4 (^a)</td>
<td>2.4 (^a)</td>
<td>2.4 (^a)</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>1</td>
<td>2.0625</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>0.2 (^a)</td>
<td>0.0146</td>
<td>0.2 (^a)</td>
<td>0.16, 0.18, 0.2</td>
<td>0.2 (^a)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.002 (^a)</td>
<td>0.0001</td>
<td>0.002 (^a)</td>
<td>0.0001, 0.0005, 0.0018, 0.002</td>
<td>0.002 (^a)</td>
</tr>
<tr>
<td>(R_0) (m)</td>
<td>0.0053</td>
<td>0.0001</td>
<td>Variable</td>
<td>0.0053</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

\(^a\)From Tang et al. (2012).
\(^b\)From Chapman (2001).
\(^c\)From Pride et al. (2004).
In a similar way, the dissipation function D is given by

$$D = \frac{1}{2} \phi_1 \phi_{10} \left(\frac{\eta}{\kappa_1} \right) \ddot{\phi}^{(1)}_i \ddot{w}^{(1)}_i + \frac{1}{2} \phi_2 \phi_{20} \left(\frac{\eta}{\kappa_2} \right) \ddot{\phi}^{(2)}_i \ddot{w}^{(2)}_i + D_{\text{LFF}},$$

where

$$D_{\text{LFF}} = \frac{3}{16} \frac{\eta \phi_2^2 \phi_{20}^2}{\kappa_2} R_{05}^2 + \frac{1}{4} \frac{\eta \phi_2^2 \phi_{20}^2}{\kappa_1} \ln \left(\frac{L + R_0}{R_0} \right) R_{05}^2,$$

is the dissipation energy function induced by the LFF in the inclusions and host medium (see Appendix B).

Following Achenbach (1984), the Lagrange equation is

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\zeta}} \right) + \frac{\partial L}{\partial \zeta} + \frac{\partial D}{\partial \zeta} = 0,$$

where $L = T - W$.

Finally, the LFF governing equation is

$$\left(\frac{3}{8} + \frac{\phi_{20}}{2 \phi_{10}} \ln \left(\frac{L + R_0}{R_0} \right) \phi_2^2 \phi_{20} \right) \ddot{\phi}_i \ddot{w}^{(2)}_i + \left(\frac{3n}{8} + \frac{n}{2 \phi_{10}} \ln \left(\frac{L + R_0}{R_0} \right) \right) \phi_1 \phi_2 (\alpha_1 M_1 - \alpha_2 M_2)$$

$$+ \phi_1 \phi_2 (M_2 \dot{\varepsilon}^{(2)} - M_1 \dot{\varepsilon}^{(1)}) + \phi_2^2 \phi_{20} (M_1 + M_2) \zeta.$$

Plane-wave analysis

From equations 3, 4, and 11, we can finally obtain the equations of motion. These equations are written in the form of plane-wave solutions:

$$(u_i, \dot{w}_i^{(1)}, \dot{w}_i^{(2)}, \zeta) = (A, B_1, B_2, C) e^{i(\omega t - k \cdot x)},$$

where (A, B_1, B_2, C) define the polarizations of the solid, the fluid flow in two pore volumes and the LFF, ω is the angular frequency, and k is the complex wavenumber. Thus, the complex velocity can be determined by

$$v = \frac{\omega}{k},$$

and the P-wave velocities are

$$V_p = \left(\frac{\text{Re} \left(\frac{1}{v} \right) }{2i \text{Im} \left(k \right) } \right)^{-1}.$$

In addition, the quality factor is defined as

$$Q = \frac{\text{Re} \left(k \right) }{2i \text{Im} \left(k \right) },$$

where $\omega = 2\pi f$, with the frequency f (e.g., Carcione, 2014).

RESULTS

In this section, we analyze the effect of cracks on the elastic wave attenuation and velocity dispersion. Table 1 gives a list of the rock and fluid properties. The porosity of cracks can be expressed as $\phi_c = 2\pi \gamma / \varepsilon$, where $\phi_2 = \phi_c$ and ε is the crack density (Tang, 2011). The dry-rock moduli of the composite can be calculated by using a Biot-consistent theory (Thomsen, 1985) as follows:

$$K_b = \frac{2}{3} \frac{(1 + v_B)}{(1 - 2v_B)} \mu_b,$$

and

$$\mu_b = \mu_s \left(1 - \frac{\phi}{1 - b_B - B_B \varepsilon} \right),$$

where $b_B = (2/15)((4 - 5v_B)/(1 - v_B)), B_B = (32/45)((1 - v_B)/(5 - v_B))/(2 - v_B)), \mu_s$ is the shear modulus of the solid grains, and v_B is the Poisson’s ratio. The dry bulk modulus of the host medium is given by (Pride et al., 2004).
\[K_{b1} = \frac{(1 - \phi_{10})K_s}{1 + c_1\phi_{10}}, \] (18)

where \(c_1 \) is the consolidation parameter of the host medium (it represents the degree of consolidation between the grains; see Pride et al., 2004) and the dry modulus of the inclusion is obtained from \(\frac{v_2}{K_{b2}} = \frac{1}{K_b} - \frac{v_1}{K_{b1}} \).

Comparison to other models

Figure 2 compares the Tang model (Tang et al., 2012), the DFM model (Yao et al., 2015), and ours, using the rock and fluid properties in Table 1, which are those of Tang et al. (2012). The P-wave velocities of the present model and the DFM model are in good agreement with Biot’s curve at low frequencies (the velocity of Biot’s theory approaches that of Gassmann’s [1951] theory at low frequencies) (i.e., below 10^4 Hz, Dunn, 1986), whereas the results of the Tang model are in agreement with Biot’s curve at high frequencies (approximately 10^5 Hz, Tang et al., 2012). This is because the squirt flow of the Tang model is described by using the conservation of the fluid mass, and the additional fluid content change due to the squirt flow into pore space is \(q_v \). The pore pressure in turn will be changed due to the fluid content variation \(\phi q_v \). Tang et al. (2012) use \(S(\omega) = \phi q_v / p \) to characterize the squirt flow effect on the pore pressure \(p \). Hence, the contribution of squirt flow to the saturated bulk modulus is related to \(S(\omega) \) (see equations C-1 and C-2). At low frequencies, \(S(\omega) \) has a finite nonzero value (Tang’s model gives a low-frequency limit below the Gassmann’s theory), whereas it is zero at high frequencies.

We describe the oscillating squirt flow through penny-shaped inclusions based on the Biot-Rayleigh theory, which is derived from Hamilton’s principle. We derive the elastic coefficients such that they are consistent with Gassmann’s theory at the low-frequency limit, such as for the DFM model (Yao et al., 2015). The rock is fully relaxed at low frequencies, and the bulk modulus increases to an unrelaxed value at the high-frequency limit. Moreover, the magnitude of attenuation predicted by our model is almost the same as that by the model of Tang (2011) and Tang et al. (2012), with higher values compared to the DFM model in the frequency range of 10^1 – 10^5 Hz.

A comparison between the Chapman model and our model is given in Figure 3, with the properties given in Table 1 (Chapman, 2001). The dry-rock moduli of the composite are estimated from the velocities of the saturated rock by using Gassmann’s theory. The fitting parameters are the dry-rock moduli of the composite, \(K_b = 14.626 \) GPa, and \(\mu_b = 12.539 \) GPa. For both theoretical models, the P-wave velocities increase with the increasing frequency. The velocity curves predicted by the models are consistent with the Gassmann limit at low frequencies. Differences between the Chapman model and our model occur at high frequencies. The crack density is the only parameter that controls the magnitude of the velocity dispersion curve in the Chapman model (Chapman et al., 2002), whereas this dispersion is dependent on the crack density \(\epsilon \) and crack aspect ratio \(\gamma \) in our study.

Figure 3. The P-wave velocity as a function of frequency. The solid blue, solid red, and solid black curves represent the results of this study, Chapman model, and Gassmann’s theory, respectively.

Figure 4. (a) The P-wave dispersion and (b) attenuation as a function of crack radius, using the rock and fluid properties listed in Table 1. The solid blue, solid red, and solid black curves correspond to \(f = 10 \) Hz, 1 kHz, and 1 MHz, respectively.
According to the above analysis, we have introduced the effects of the LFF between the cracks and the pores, and the predictions are consistent with the Biot-Gassmann theory.

Wave dispersion and attenuation analysis

Figure 4 shows the P-wave dispersion (Figure 4a) and attenuation (Figure 4b) as a function of the crack radius R_0. The values 10 Hz, 1 kHz, and 1 MHz represent the seismic, log, and ultrasonic frequencies, respectively. When the crack porosity is constant, the P-wave velocity increases with increasing crack radius, approaching a constant value. In addition, the attenuation is due to the combined effect of the global and squirt flows at the ultrasonic frequency band. The attenuation curve controlled by the squirt flow moves toward low frequencies with increasing crack radius. The results show that the crack radius controls the relaxation frequency of the squirt flow.

Figure 5 shows the P-wave dispersion (Figure 5a) and attenuation (Figure 5b) for different crack density ε and aspect ratio γ: $\varepsilon = 0.16$, $\gamma = 0.002$; $\varepsilon = 0.18$, $\gamma = 0.002$; $\varepsilon = 0.2$, $\gamma = 0.002$; $\varepsilon = 0.2$, $\gamma = 0.0018$; and $\varepsilon = 0.2$, $\gamma = 0.0005$. The results indicate that keeping constant the crack aspect ratio, the larger the crack density, the larger the amount of attenuation and dispersion caused by the squirt flow. In contrast, when the crack density is constant, the larger the crack aspect ratio, the smaller the levels of attenuation and dispersion. Then, at high frequencies, the dispersion and attenuation induced by the global flow (Biot’s theory) are the same for all of the crack porosities. This is because the crack porosity is much smaller than the porosity of the host medium and the global flow is mainly affected by the properties of the host medium. Moreover, the P-wave velocity and attenuation curves controlled by the squirt flow extend to the low frequencies with the increasing crack density and decreasing crack aspect ratio. Regarding the effects of the crack density and aspect ratio on the P-wave velocity and attenuation, two conclusions are highlighted: crack density is the main factor affecting the amount of dispersion and attenuation induced by the squirt flow (Figure 5; see the solid blue, solid red, and solid black curves, respectively), whereas the crack aspect ratio mainly affects the relaxation frequency of the squirt flow (Figure 5; see the solid magenta, solid green, and solid brown curves, respectively). Similar conclusions can be found in other works (e.g., Berryman, 2007; Tang et al., 2012). It can also be noted that when the media have the same crack porosity (Figure 5; see the solid magenta and solid red curves, respectively), the variation of the crack density and aspect ratio can cause a significant difference of P-wave velocity and attenuation, which highlights that knowledge of the pore geometry is essential to adequately predict these properties.

The P-wave dispersion and attenuation at different fluid viscosities are given in Figure 6. With the increasing fluid viscosity, the relaxation frequency of the squirt and global flows shift to the low and high frequencies, respectively (see Ba et al., 2011). The fluid viscosity only affects the P-wave relaxation frequency, with no effect on the magnitude of the wave velocity at the low- and high-frequency limits.
COMPARISON TO EXPERIMENTAL DATA

Here, we model the pressure dependence of the wave velocity at full saturation. We assume that the pore structure of a rock saturated with a fluid remains the same as in the dry test and that the pore aspect ratio distribution can be estimated from the pressure dependence of the dry velocities. Figure 7 shows the P- and S-wave velocities as a function of the differential pressure for two dry tight sandstone samples. These samples are from southwest of the Sichuan Basin and are composed of quartz, feldspar, debris, and mica, etc. The experiments are performed at a frequency of 1 MHz, a temperature of 80°C, and a varying differential pressure of 5–35 MPa. The rock properties of the samples are listed in Table 2. The experimental setup can be found in Ba et al. (2018). The pore fluid used in the experiments is water, whose bulk modulus, density, and viscosity are 2.41 GPa, 1010 kg/m³, and 0.000938 Pa·s, respectively. In Figure 7, we can see the nonlinear features of the pressure-velocity curve, which implies that the cracks close with increasing differential pressure. In addition, the predictions of the Mori-Tanaka model (e.g., Mori and Tanaka, 1973) for two rock samples are all in good agreement with the measurements.

David and Zimmerman (2012) develop a procedure for calculating the pore aspect ratio distribution, according to the Mori-Tanaka model (e.g., Mori and Tanaka, 1973). According to this procedure, the aspect ratio γ of the stiff porosity for tight sandstone samples 1 and 2 is 0.05 and 0.07, respectively. Figure 8 displays the crack porosity ϕ_c (Figure 8a) and density ϵ (Figure 8b) as a function of pressure for the two rock samples. The crack porosity and density decrease with pressure p, and all cracks are almost closed at high pressure. The crack porosity and density are used to estimate the saturated velocities.

The dry-rock moduli of the samples can be estimated from dry measurements by using the Mori-Tanaka model. The dry-rock bulk modulus of the host medium is given in equation 16, and the consolidation c_1 is a fitting parameter whose value decreases with increasing differential pressure. For sample 1, the values of c_1 at each pressure are 6.4, 5.6, 5.2, 4.7, 4, 3.4, and 3.4; for sample 2, the values are 11.2, 9, 7.6, 6.8, 6.4, 6, and 5.7. In addition, we assume that the crack radius R_0 is constant for different differential pressures. Figure 9 shows the P-wave velocities of the water-saturated tight sandstone samples. Based on the Mori-Tanaka model, the dry bulk and shear moduli for the rock samples can be obtained and the saturated velocities can be calculated with the Gassmann equation. The results from Gassmann equation are lower than the measurements,

Table 2. Properties of the rock samples

<table>
<thead>
<tr>
<th>Tight sandstone</th>
<th>K_s (GPa)</th>
<th>μ_s (GPa)</th>
<th>ρ_s (kg/m³)</th>
<th>ϕ_{10} (%)</th>
<th>κ_1 (mD)</th>
<th>R_0 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39</td>
<td>33</td>
<td>2672</td>
<td>6.26</td>
<td>0.046</td>
<td>0.000005</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>35</td>
<td>2660</td>
<td>13.91</td>
<td>1.37</td>
<td>0.000035</td>
</tr>
</tbody>
</table>

Figure 7. The P- and S-wave velocities as a function of the differential pressure for the tight sandstone samples (a) 1 and (b) 2. The blue line is the predicted results of the Mori-Tanaka model, and the circles are measurements.

Figure 8. (a) Crack porosity and (b) density as a function of the differential pressure for the two tight sandstone samples, according to David and Zimmerman (2012) model. The solid curves with circles and diamonds correspond to the tight sandstone samples 1 and 2, respectively.
and this is because the LFF effect between the cracks and the pores is not considered in this theory. On the other hand, the results obtained with our model are in better agreement with the experimental data than those of the other models.

CONCLUSION

We have derived new wave-propagation equations for cracked porous media by generalizing the Biot-Rayleigh theory, describing local-squirt flow attenuation, to the case of penny-shaped inclusions, which represent the cracks. The theory has as input parameters measurable properties such as the crack radius, density, and aspect ratio, which highly affect the anelastic properties of the rock. The crack radius mainly alters the relaxation frequency of the squirt-flow mechanism, but not the amount of dispersion and attenuation, which is highly affected by the crack density and aspect ratio. Moreover, our study shows that the cracks have a major effect on the seismic wave velocity, although their porosity is small. Variations in the crack density can cause significant velocity changes. Moreover, our model is consistent with Gassmann’s theory and honors the experimental data of attenuation and velocity dispersion.

ACKNOWLEDGMENTS

This work is supported by the Cultivation Program of the “111” Project of China, Distinguished Professor Program of Jiangsu Province, China, the National Natural Science Foundation of China (no. 41704109), and the Fundamental Research Funds for the Central Universities, China.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be obtained by contacting the corresponding author.

APPENDIX A

EXPRESSIONS OF THE STIFFNESS COEFFICIENTS

Following Ba et al. (2011), the stiffness coefficients can be given by

$$
\lambda_c = (1 - \phi)K_s - \frac{2}{3}\mu + \left(2 - \frac{K_s}{K_f}\right)(\phi_1\alpha_1M_1 + \phi_2\alpha_2M_2) - \left(1 - \frac{K_s}{K_f}\right)(\phi_1^2M_1 + \phi_2^2M_2), \quad (A-1)
$$

$$
\alpha_1 = \frac{\beta\phi_1K_s}{\gamma K_f} + \phi_1, \quad \alpha_2 = \frac{\phi_2K_s}{\gamma K_f} + \phi_2 \quad (A-2)
$$

$$
M_1 = \frac{K_f}{\left(\frac{\phi}{\gamma + 1}\right)\phi_1}, \quad M_2 = \frac{K_f}{\left(\frac{1}{\gamma + 1}\right)\phi_2} \quad (A-3)
$$

$$
\gamma = \frac{K_s}{K_f}\left(\frac{\beta\phi_1 + \phi_2}{1 - \phi - \frac{\phi_2^2}{K_f}}\right) \quad (A-4)
$$

$$
\beta = \frac{\phi_20}{\phi_{10}}\left[1 - (1 - \phi_{10})\frac{K_s}{K_{d1}}\right] \quad (A-5)
$$

where K_s is the bulk modulus of the solid, K_{d1} and K_{d2} are the dry bulk moduli of host medium and inclusions, and K_b is the dry moduli of the solid.

APPENDIX B

KINETIC ENERGY AND DISSIPATION FUNCTION

Following Ba et al. (2011), the kinetic energy function is determined by

$$
T = \frac{1}{2}(1 - \phi)\rho_s \sum_i \dot{u}_i^2
+ \frac{1}{2}\rho_s \sum_m \int_{\Omega_m} \left[\dot{u}_i + w_i^{(m)} + l^{(m)}\right]^2 d\Omega_m. \quad (B-1)
$$
Compared with spherical oscillations (Ba et al., 2011), the only difference is the microvelocity field of the LFF induced by periodic cylindrical oscillations. Hence, we only analyze the terms related with \(l^{(0)} \) in the above integral. First, in the pore volume \(\Omega_1 \), we have

\[
\rho_f \int_{\Omega_1} \sum_i (\dot{u}_i l^{(1)}_i) d\Omega_1 = 0. \tag{B-2}
\]

Due to the LFF in the radial direction and a symmetrical penny-shaped inclusion, the integral in equation B-2 is zero. In addition, we also have

\[
\rho_f \int_{\Omega_1} \sum_i (\dot{w}_i l^{(1)}_i) d\Omega_1 = 0. \tag{B-3}
\]

Combining the above analysis, the kinetic energy function of LFF in the pore volume \(\Omega_1 \) can be written as

\[
T_{L,\text{out}} = \frac{1}{2} \rho_f \int_{\Omega_1} \sum_i (l^{(1)}_i)^2 d\Omega_1. \tag{B-4}
\]

The equation of the fluid-mass conservation can be generalized as

\[
2\pi Rh \dot{R} \phi_{20} = 2\pi rh \dot{r}_{\text{out}} \phi_{10}. \tag{B-5}
\]

where \(\dot{R} \) is the fluid particle velocity at the boundary between the two pore volumes \(R < r < R + L \leq C \) and \(\dot{r}_{\text{out}} \) is the fluid particle velocity outside the inclusion, where \(L \) is the characteristic fluid flow length, \(L = (R^0/12)^{1/2} \) (Pride et al., 2004).

Hence, by substituting equation B-5 into equation B-4, we get

\[
T_{L,\text{out}} = \frac{1}{2} \rho_f \phi_{10} \int_R^{L+R} \frac{2\pi rh}{2} (\frac{\phi_{20} \dot{R}}{\phi_{10} r})^2 dr
= \rho_f \frac{\phi_{20}^2}{\phi_{10}^2} \pi h R^2 \dot{R}^2 \ln \frac{L + R}{R}. \tag{B-6}
\]

Second, in \(\Omega_2 \) (inclusions), we have

\[
\rho_f \int_{\Omega_2} \sum_i (\dot{u}_i l^{(2)}_i) d\Omega_2 = 0. \tag{B-7}
\]

Because the directions of the global and LFF are radial, we can assume \(w_i^{(2)} = l_i^{(2)} \) and have

\[
\rho_f \int_{\Omega_2} \sum_i (\dot{w}_i l^{(2)}_i) d\Omega_2 = \rho_f \int_{\Omega_2} \sum_i (l^{(2)}_i)^2 d\Omega_2. \tag{B-8}
\]

Combining these analyses, the kinetic energy function of LFF in \(\Omega_2 \) can be written as

\[
T_{L,\text{inter}} = \frac{3}{2} \rho_f \int_{\Omega_2} \sum_i (l^{(2)}_i)^2 d\Omega_2. \tag{B-9}
\]

The equation of the fluid-mass conservation is (Ba et al., 2014)

\[
\frac{d\rho_f}{dt} + \rho_f \left(\frac{1}{r} \frac{\partial}{\partial r} (r \dot{r}_{\text{in}}) \right) = 0. \tag{B-10}
\]

From this equation, we obtain the fluid particle velocity inside the inclusion:

\[
\dot{r}_{\text{in}} = \frac{\dot{R}}{R} r. \tag{B-11}
\]

where \(0 < r \leq R \).

Hence, by substituting equation B-11 into equation B-9, we obtain

\[
T_{L,\text{inter}} = \frac{3}{2} \rho_f \phi_{20} \int_0^R 2\pi r h \left(\frac{\dot{R}}{R} r \right)^2 dr = \frac{3}{4} \rho_f \phi_{20} \pi h R^2 \dot{R}^2. \tag{B-12}
\]

Here, we denote the volume fraction of inclusions per unit volume of composite as \(v_2 = \pi R^2 h N_0 \). By using this relation and \(\phi_2 = v_2 \phi_{20} \), we obtain

\[
R^2 = \frac{\phi_2}{\pi h N_0 \phi_{20}}. \tag{B-13}
\]

From equation 2, we have

\[
\dot{R} = \frac{1}{2} \phi_1 R_0 \dot{\varepsilon}. \tag{B-14}
\]

Combining equations B-13 and B-14 with equations B-6 and B-12 gives

\[
T_{L,\text{inter}} = N_0 (T_{L,\text{inter}} + T_{L,\text{out}})
= \frac{3}{16} \rho_f \phi_{20}^2 \phi_1^2 R_0 \dot{\varepsilon}^2 + \frac{1}{4} \rho_f \phi_{20} \phi_{10} \ln \frac{L + R}{R_0} \frac{R_0 \dot{\varepsilon}^2}{R^2}. \tag{B-15}
\]

In a similar way, the dissipation function of LFF in two pore volumes can be expressed as

\[
D_{L,\text{out}} = \frac{1}{2} \frac{\phi_{20}^2}{\phi_{10}^2} \frac{L + R}{R} \int_R^{L+R} \frac{2\pi rh}{2} (\frac{\phi_{20} \dot{R}}{\phi_{10} r})^2 dr
= \eta \frac{\phi_{20}^2}{\phi_{10}^2} \pi h R^2 \dot{R}^2 \ln \frac{L + R}{R}. \tag{B-16}
\]

\[
D_{L,\text{inter}} = \frac{3}{2} \frac{\eta \phi_{20}^2}{\phi_{20} \phi_{10} \eta} \int_0^R 2\pi r h \left(\frac{\dot{R}}{R} r \right)^2 dr = \frac{3}{4} \phi_{20} \eta \pi h R^2 \dot{R}^2. \tag{B-17}
\]

Substituting equations B-5, B-11, B-13, and B-14 into equations B-16 and B-17 gives
\[D_{\text{LFF}} = \frac{3}{16} \frac{\eta \phi^2 \phi_{\text{20} \phi_{\text{2}}}}{\kappa_2} R_{05}^{2+2} + \frac{1}{4} \frac{\eta \phi^2 \phi_{\text{20} \phi_{\text{2}}}}{\kappa_1} L + R_0 R_{05}^{2+2}. \quad (B-18) \]

APPENDIX C

MAIN RESULTS OF THE TANG MODEL AND THE DFM MODEL

Tang et al. (2012) develop a unified elastic wave theory to model the effects of LFF between pores and cracks, where

\[K = K_b + \frac{\alpha^2}{\kappa_r} + \phi K_f + S(\phi), \quad (C-1) \]

where \(K \) is the saturated bulk modulus of the rock and \(\alpha \) is the Biot coefficient. The term \(S(\phi) \) governs the LFF, and it is given by

\[S(\phi) = \frac{8(1-r_0)(1-\lambda^2)}{3K_0} \left[1 + \frac{4(1-r_0)}{3\mu_0(1+\phi)} \left(\frac{\mu_0}{\kappa_r} \right) \right], \quad (C-2) \]

where \(M = 1 + \left((4-5r_0)/(2(7-5r_0)) \right) \left((\lambda^2)/(1-\lambda^2) \right) + (9/(2(7-5r_0))) \left((\lambda^2)/(1+\lambda^2) \right) \lambda = (3\phi_0)/(4\pi\epsilon); \mu_0, \ K_0, \) and \(r_0 \) are the shear modulus, bulk modulus, and Poisson’s ratio of the background medium in the absence of squirt flow, crack density \(\epsilon \), and aspect ratio \(\gamma \).

Yao et al. (2015) rederive and modify Tang’s model as

\[K = K_b + \frac{\alpha^2}{\kappa_r} + \frac{\phi^2}{\kappa_r} - \Delta S(\phi), \quad (C-3) \]

where \(\Delta S(\phi) = S(0) - S(\phi), \ S(0) = (8(1-r_0)(1+\lambda^2))/(3\mu_0) \left((1/K_0) - (1/K_s) \right) \left((1/K_s) - (1/K_0) \right) M. \)

APPENDIX D

EXPRESSIONS OF THE MORI-TANAKA MODEL

According to the Mori-Tanaka theory (Mori and Tanaka, 1973), the effective compliances are

\[\frac{1}{K_{\text{eff}}} = \frac{1}{K_s} \left(1 + \frac{\phi_{\text{eff}}}{1 - \phi_{\text{eff}}} P \right), \quad (D-1) \]

\[\frac{1}{\mu_{\text{eff}}} = \frac{1}{\mu_s} \left(1 + \frac{\phi_{\text{eff}}}{1 - \phi_{\text{eff}}} Q \right), \quad (D-2) \]

where \(K_{\text{eff}} \) and \(\mu_{\text{eff}} \) are the bulk and shear moduli of the host material, respectively, \(\phi_{\text{eff}} \) is the stiff porosity, and \(P \) and \(Q \) are the normalized pore compressibility and shear compliance, respectively.

Cracks are introduced into the host material by using the Mori-Tanaka theory, and neglecting the interaction between cracks and pores. It results in the following effective compliances:

\[\frac{1}{K_{\text{eff}}} = \frac{1}{K_s} \left(1 + \frac{16(1 - \epsilon v_{\text{eff}}^2)}{9(1 - 2\epsilon v_{\text{eff}}^2)} e \right), \quad (D-3) \]

\[\frac{1}{G_{\text{eff}}} = \frac{1}{G_s} \left(1 + \frac{32(1 - \epsilon v_{\text{eff}}^2)(5 - \epsilon v_{\text{eff}}^2)}{45(2 - \epsilon v_{\text{eff}}^2)} e \right), \quad (D-4) \]

where \(v_{\text{eff}} = (3\phi_{\text{eff}} - 2\epsilon v_{\text{eff}}^2)/(6\epsilon v_{\text{eff}}^2 + 2G_{\text{eff}}) \) and crack density \(\epsilon \).

REFERENCES

