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A B S T R A C T

The variations of the static and dynamic moduli of porous rocks as a function of differential pressure have been described in terms of pore microstructure, i.e., the
effects of cracks (soft pores) and intergranular (stiff) pores. Specifically, the first play a major role on the elastic properties of rocks. By using the Mori-Tanaka theory,
this work relates rock elastic properties to the pore microstructure. Then, we estimate the distribution of pore aspect ratios by using the static bulk modulus instead of
the dynamic one. The approach is applied to data from the Navajo and Weber sandstones. The results show that the cumulative crack porosity and density obtained
from the static bulk modulus are higher than those estimated from the dynamic moduli, while the dominant crack aspect ratio is lower. The total porosity estimated
from the static modulus agrees better with the experimental data. Furthermore, the cumulative crack (soft or compliant) porosity are estimated by the method, which
also agrees with results from stress-strain relation and from bulk compressibility curves.

1. Introduction

The effects of pore microstructure on the static and dynamic stiff-
ness moduli of rocks are important for evaluating reservoir properties.1

Many works that study these effects are based on experimental ultra-
sonic velocities and static strain measurements.2–5 It has been found
that the static and dynamic moduli greatly vary at low differential
pressures ( = −P P Pd c p, where Pc and Pp are the confining and pore
pressures, respectively), a phenomenon that can be attributed to the
opening of cracks when the pore pressure approaches the confining
pressure. Izumotani and Onozuka6 stated that cracks with lower aspect
ratio close first when the differential pressure increases and the ones
with higher aspect ratios become thinner and then close under high
pressure. The aspect ratio of a spheroidal crack is defined here as half
the crack width divided by half the crack length and is always less or
equal to one (a spherical pore in the latter case).

Essentially, the stress dependence of elastic properties is closely
related to the pore microstructure. Walsh7 derived an expression of the
elastic bulk modulus in dry rocks as a function of the confining pressure
Pc (pore pressure is equal to zero). He found that the effect of the
(compliant) cracks on the modulus is more significant than those of the
intergranular (stiff) pores. In addition, Walsh7 estimated the crack
porosity of the rock samples. Cheng and Toksöz8 obtained the porosity
with different pore aspect ratios in sandstones by using the theory of
Kuster and Toksöz.9 Other works which analyze the stiffness moduli
variations with pressure are Berryman10 and Norris.11 Shapiro12 de-
veloped a relationship between the bulk compressibility and differential

pressure by dividing the total porosity ϕ into two parts: stiff porosity
(ϕs) and compliant porosity (ϕc), and found that the compliant porosity
(represented by the cracks) has a greater effect on the compressibility.
Based on this theory, Pervukhina et al.13 analyzed experimental data
and confirmed a linear dependence of the compressibility on the com-
pliant porosity. Following these works, Han14 modeled the pressure
dependence of velocity with a differential effective medium model and
estimated the compliant pore aspect ratio. Accordingly, when the stress
dependence of the elastic moduli is known, the distribution of pore
aspect ratios can be estimated.

Since the Kuster and Toksöz9 theory fails to estimate the effective
elastic moduli at high porosities, Tran et al.1 modified the Cheng and
Toksöz8 approach by introducing a differential effective medium (DEM)
theory, and inverted the porosity from velocity data. However, their
results are non-unique, and the reliability depends on the a-priori
model. To solve this problem, Izumotani and Onozuka6 proposed a
method for estimating the porosity with different aspect ratios by using
very fast simulated annealing. Li et al.15 proposed a nonlinear global
optimization algorithm to find the best effective pore aspect ratio. Si-
milarly, Fortin et al.16 simulated the evolution of crack density and
aspect ratio as a function of differential pressure in dry- and wet-rock
specimens by using effective medium models.17,18

Eberhart-Phillips et al.19 obtained an empirical relation between
seismic velocity and pressure, based on a combination of linear and
exponential terms. Zimmerman20 used this relation to approximate the
compressibility of three sandstone samples, and obtain their pore aspect
ratio distributions. David and Zimmerman,21 hereafter called the DZ
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model, extended Zimmerman's20 method to obtain a distribution of
crack aspect ratios from dry-rock wave velocities, on the basis of the
Mori-Tanaka theory,22,23 and predicted the wet-rock velocities as a
function of differential pressure by using the Gassmann equations.24,25

Duan et al.26 obtained the pore aspect ratio distribution of cracks in
tight sandstones and analyzed the effects of cracks on wave dispersion
and attenuation. Although these methods are easy to implement, their
results generally are not in agreement with real data. It has been found
that crack porosity is underestimated when predicted with the dynamic
moduli (i.e., from wave velocities).8,13

In this work, we propose the use of the static modulus instead of the
dynamic modulus to obtain the crack porosity and density. First, we
present the relations between elastic properties and pore structure
based on the Mori-Tanaka theory.22,23 Thereafter, we derive an ex-
pression of the stress-strain relation based on the Zimmerman's20 em-
pirical relation and estimate the crack porosity from the static and
dynamic moduli by using Walsh's7 method. Then, the DZ model is ap-
plied to the static modulus to estimate the distribution. The results are
compared with those obtained from the dynamic moduli by using data
for the Navajo and Weber sandstones.

2. Theoretical models

2.1. Relations between elastic properties and pore structure

Pore structure in rocks regards shape, volume concentration, dis-
tribution and connectivity of pores and cracks.8 Specifically, cracks
have a major effect on elastic properties because they are compliant. In
order to evaluate the effects of pore structure on elastic properties,
effective medium theories are used to simulate an elastic isotropic
material containing randomly-oriented stiff pores and compliant cracks.
An expression for the effective compressibility Ceff under drained con-
ditions (pore pressure is equal to zero, Pc = Pd= p) has been derived by
Walsh,7 as follows:

= −C C
ϕ
p

d
d

,eff 0
(1)

where =C K1/0 0 is the bulk compressibility of the grains, ϕ is the total
porosity and K0 is the bulk modulus of the grains. Note that Ceff is re-
lated to the rate of change of porosity with pressure rather than porosity
directly.

The approach assumes the pore system to be composed of stiff in-
tergranular pores and compliant contacts/cracks. According to the
Mori-Tanaka theory,22,23 the effective compliances of an isotropic solid
comprising one family of randomly oriented spheroidal pores, are given
by
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where =C K1/stiff stiff , =S G1/stiff stiff , and Kstiff and Gstiff are the bulk and
shear moduli of the host material, respectively, ϕstiff is the stiff porosity
and the shear compliance of the grains is =S G1/0 0, where G0 is the
shear modulus, and P and Q are given by27
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where v is Poisson's ratio of the grains, i.e.,
= − +v K G K G(3 2 )/(6 2 )0 0 0 0 , and α is the spheroidal aspect ratio.
Cracks are introduced into the host material using the Mori-Tanaka

theory,22,23 neglecting the interaction between cracks and pores. It re-
sults in the following effective compliances for randomly oriented
penny-shaped cracks:
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where = − +v K G K G(3 2 )/(6 2 )stiff stiff stiff stiff stiff , and Γ is the crack den-
sity, given by

=Γ
N a

V
,

3

(9)

where a is the average radius of cracks and N is the total number of
cracks embedded in a representative elementary volume V (the re-
presentative elementary volume has well-defined properties, such as
porosity, permeability, and elastic moduli, which are representative of
the medium). The brackets denote an average.

2.2. Analysis based on dry-rock experimental data

2.2.1. Estimation of crack porosity
Eq. (1) can be rewritten as

= −
ϕ
p

C C
d
d

.c
0 eff

(10)

Integrating between 0 and pclose, gives

∫ ∫= −ϕ C dp C dp,
p p

c 0 eff 0 0
close close

(11)

where pclose is the closure pressure of a pore, the first and second terms
on the right-hand side are the areas A and B of the −C peff and −C p0
curves, and the crack porosity ϕc is A–B, as shown in Fig. 1.

Eq. (11) can be rewritten as

= −ϕ ΔV
V

C p ,c 0 close (12)

where ΔV is the decrease in volume V , and the crack porosity ϕc is the
intercept on the volumetric strain axis as shown in Fig. 2.7

Hence, to compute the crack porosity, we need the relations be-
tween bulk compressibility (or strain) and stress. The issue has been
discussed by many researchers.20,28 An empirical form of −C peff is
given by Zimmerman20 as

= + − −C C C C e( ) .p p
eff eff

hp
eff
i

eff
hp / ˆ (13)

Similarly,
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= + − −S S S S e( ) ,p p
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where the superscript “hp” denotes the high-pressure value, the su-
perscript “i” denotes the initial value (zero pressure), and the char-
acteristic stress p̂ is a scaling factor, with dimension of pressure, that
characterizes the rate at which the compliances level off.20

By integrating Eq. (13) between 0 and p, we can get the stress-strain
relation20

= + − − −( )ΔV
V

C p C C p e( ) ˆ 1 .p p
eff
hp

eff
i

eff
hp / ˆ

(15)

The crack porosity can be obtained from experimental data by fit-
ting ΔV V/ and velocities measured at different differential pressures.

2.2.2. Estimation of the pore aspect ratio distribution from the static bulk
modulus

The pore-structure model (DZ) proposed by David and
Zimmerman,21 which contains a distribution of cracks with different
aspect ratios and stiff pores with a single aspect ratio, is used to invert
the pore aspect ratio distribution. The modeling is performed in four
steps as follows.

Step 1: Get the aspect ratio of the stiff pores. Since all the cracks are
closed at high pressure, the effective elastic moduli of the host material
are the high-pressure moduli. Hence, we can directly obtain the effec-
tive static bulk modulus =K C1/eff,st

hp
eff,st
hp from the measured high-pres-

sure bulk compressibility, or calculate its value from the high pressure

strain as

=K
p

ΔV V/
.eff,st

hp
(16)

Using Eq. (2), the aspect ratio αst
hp can be obtained by a least-square

regression of the high-pressure static bulk modulus.
Step 2: Calculate the cumulative crack density at each pressure. The

pressure dependence of the effective moduli is closely related to the
crack density. When the crack density is given, the elastic moduli can be
obtained with Eqs. (7) and (8) and vice versa. Hence, we can calculate
the value of the cumulative crack density αΓ ( )p,st by a least-square re-
gression on the measured bulk modulus at the each differential pressure
p.

Step 3: Establish the relation between p and Γp,st. Step 2 only gives the
crack density at each pressure p. Several researchers suggest that the
change of crack density with pressure obeys an exponentially decay
law,12

= −Γ α Γ e( ) ,p
p p

,st st
i / ˆ (17)

where Γst
i is the initial crack density at zero differential pressure. Using

the crack density at each pressure p, the fitting parameters in (17) can
be calculated. Note that these parameters depend on the choice of the
effective medium theory.

Step 4: Obtain the pore aspect ratio distribution. Denote with αst
i and

α p( )st the crack aspect ratios at zero pressure and pressure p, respec-
tively. At increasing differential pressure, cracks close and Γst

i gradually
decreases. All cracks open at pressure p have a minimum value of the
initial aspect ratio αp,st

i , and according to David and Zimmerman21 :
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where K (Γ )pst is the effective static bulk modulus at pressure p given by
Eq. (2).

Substituting Eq. (17) into (18), we obtain
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Integrating Eq. (19) between Γi and αΓ ( )p yields
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hp is the effective static

Poisson ratio at high pressure
By combining Eqs. (17) and (20), the relation between aspect ratio

and p is

=
−

α
ν p

πE
4[1 ( ) ]

,p,st
i st

hp 2

st
hp (21)

where Est
hp is the effective static Young modulus at high pressure and

= −E K ν3 [1 2 ]st
hp

eff,st
hp

st
hp . Here, we assume that the decrease in aspect

ratio is the same with an increment of differential pressure pd . Hence,
when pd is small, the decrease in crack density is caused by cracks with
aspect ratios smaller than αp,dy

i . In this way, the pore aspect ratio dis-
tribution and the crack porosity at each pressure p are obtained from
the experimental static bulk-moduli.

2.2.3. Estimation of the pore aspect ratio distribution from the dynamic
moduli

By using the DZ model, we can extract the pore aspect ratio dis-
tribution from the P and S-wave velocities (Vp andVs). The effective bulk
and shear dynamic moduli, Kdy

hp and Gdy
hp, are calculated by using the

high-pressure wave velocities, as

Fig. 1. Graphical determination of crack porosity from the −C peff curve (see
Eq. (11)).

Fig. 2. Graphical determination of crack porosity from the −p ΔV V/ curve
(see Eq. (12)).
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Then, steps 2–4 are the same of the previous section. As discussed by
Pervukhina et al.,13 the difference between the static and dynamic
moduli decreases with increasing differential pressure. This difference
yields different values of pore aspect ratio distribution.

3. Results and discussion

Coyner4 provides velocities and static bulk moduli for two rocks,
namely Navajo and Weber sandstones. The measurements were per-
formed under dry conditions and up to a differential pressure of
100MPa. The porosity of Navajo sandstone is 0.118 containing 89%
quartz, 4% Kfeldspar, 4% illite, 2% kaolinite and 1% calcite.29 Porosity
is 0.095 for Weber sandstone and the mineral components are similar to
Navajo sandstone.

3.1. Estimation of crack porosity from the stress-strain relation

On the basis of the equations given in Section 2.2.1, the crack
porosity for the Navajo and Weber sandstones estimated from the
stress-strain curves are shown in Fig. 3. For Navajo sandstone, the solid
fitting curve is = + − −ΔV V p e/ 0.0489 0.0007(1 )p/0.014 , where p is given
in GPa, the goodness of the fit is R2 =0.9998 and the estimated crack
porosity is 0.079%. For Weber sandstone, the solid fitting curve is

= + − −ΔV V p e/ 0.0563 0.0059(1 )p/0.0111 , the goodness of the fit is
R2 =0.9999 and the estimated crack porosity is 0.58%.

The data shows that both sandstones exhibit nonlinearity of the
stress-strain curves, which is associated to the presence of cracks. The
sensitivity is considered to be approximately inversely proportional to
the aspect ratio of the cracks.12,30 Hence, the larger the sensitivity and
the crack porosity, the more nonlinear is the stress-strain curve.

3.2. Estimation of the crack porosity from bulk compressibility

Experimental measurements of the static and dynamic bulk com-
pressibilities of the two sandstones are shown in Fig. 4. As discussed in
Section 2.2, if the relation between stress and strain (or wave velocities)
is known, the expressions of the static (dynamic) bulk compressibility
can be derived. The fit is shown in Table 1. For Navajo sandstone, the
estimated crack porosity is 0.079% by using the static bulk compres-
sibility, which is same of that estimated from the stress-strain curve,
and Ceff,st

hp =0.0489 GPa−1 and Ceff,st
i =0.0989 GPa−1. Instead, the es-

timated crack porosity for Navajo Sandstone is 0.044% by using the
dynamic bulk compressibility, and Ceff,dy

hp =0.0438 GPa−1 and
Ceff,dy

i =0.0652 GPa−1. For Weber sandstone, the estimated “static”
crack porosity is the same of that obtained with the stress-strain curves,
i.e., 0.58%, with Ceff,st

hp =0.0563 GPa−1 and Ceff,st
i =1.0994 GPa−1. On

the other hand, the estimated crack porosity is 0.25% by using dynamic
bulk compressibility, with Ceff,dy

hp =0.0484 GPa−1 and
Ceff,dy

i =0.3924 GPa−1. Then, these results indicate that static mea-
surements yield a more consistent inversion of the crack porosity.

The results of Table 1 indicate that there is a higher fitting error in
Fig. 4a for Navajo sandstone compared to Weber sandstone (Fig. 4b).
The static bulk compressibility is approximately twice the dynamic bulk
compressibility at low differential pressures. The difference decreases
with increasing differential pressure. The estimated crack porosity from
the static compressibility is higher than that obtained from the dynamic
compressibility.

3.3. Estimation of the pore aspect ratio distribution

The closure pressure of a pore is = −p πE α v/(4(1 ( ) ))close 0 0 0
2 ,7

where = −E K v3 (1 2 )0 0 0 is the Young modulus of the grains, and α0 is
the aspect ratio at p=0. In a typical sandstone ( ∼E 50 GPa0 ), the
closure pressure of a pore with an aspect ratio =α 0.01 equals 500MPa,
which is far beyond the pressure used in the laboratory measurements.
Hence, the aspect ratio of stiff pores can be considered in the range of

Fig. 3. Stress-strain curves for Navajo and Weber sandstones. The solid curve
represents the fit with Eq. (15). The black circles are Coyner4 measurements.
The broken curve is the stress-strain relation extrapolated to zero pressure.

Fig. 4. Static (solid curve) and dynamic (broken curve) bulk compressibilities
as a function of differential pressure for Navajo and Weber sandstones. The
curve represents the fit with Eq. (13). The circles and triangles are Coyner4

measurements.
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0.01 < α < 1 and the aspect ratio of compliant cracks is less than
0.01.21

As discussed in Step 1 (Section 2.2.2), the aspect ratio of stiff pores
are computed at high differential pressure, which are shown in Table 2.
We have used K0 =30GPa and G0 =33GPa, calculated with a Voigt-
Reuss-Hill average. The elastic properties of the minerals are taken from
Mavko et al.31 These results show that the estimated aspect ratios from
the dynamic moduli (wave velocities) are higher than those obtained
from the static bulk modulus. In addition, as shown in Fig. 4, the dy-
namic bulk modulus approaches the static one at high pressure, and αdy

hp

also approaches αst
hp.

The P- and S-wave velocities as a function of the differential pres-
sure for Navajo sandstone are shown in Fig. 5. At low differential
pressures, where cracks begin to close, the velocity sharply increases.
This behavior is consistent with that reported in the literature.32–36 On
the other hand, Fig. 6 gives the P- and S-wave velocities as a function of
differential pressure for Weber sandstone, where a similar behavior can
be observed.

Next, we obtain the pressure dependence of the crack density (Step
3 in Section 2.2.2). For Navajo sandstone, the static crack density is

= −eΓ 0.8842p
p

,st
/0.0089, with a goodness fit R2 =0.9509, and the dynamic

crack density is = −eΓ 0.2007p
p

,dy
/0.0237, with a goodness fit R2 =0.9894.

For Weber sandstone, the static crack density is = −eΓ 5.1001p
p

,dy
/0.0089,

with a goodness fit R2 =0.9887, and the dynamic crack density is
= −eΓ 1.4596p

p
,dy

/0.0154, with a goodness fit R2 =0.9951.
Following Step 4 (Section 2.2.2), the pore aspect ratio distribution is

given in Fig. 7 for Navajo and Weber sandstones, where the broken and
solid curves are obtained with dynamic and static data, respectively. It
is evident that the whole crack porosity with different aspect ratios
estimated from the static bulk modulus is higher than that estimated
from the dynamic moduli. The “static” dominant porosity and aspect
ratio are 0.00035% and 0.00023 for Navajo sandstone and 0.0023%
and 0.00026 for Weber sandstone, respectively. The corresponding
“dynamic” values are 7×10−5% and 0.0006 (Navajo sandstone) and
6×10−4% and 0.00045 (Weber sandstone). Both sandstones can be
characterized by a bimodal porosity system, i.e. cracks and stiff pores.
In previous studies, two constant aspect ratios have been used for
modeling the pressure dependency of dynamic moduli with effective
medium theories.14,37 In addition, the distributions of aspect ratio from
dynamic moduli are found to be slightly wider than the static ones,
which implies that the static moduli change is sharper due to the clo-
sure of the dominant cracks (see Fig. 7).

The results of the cumulative crack porosity and density are given in
Fig. 8 and 9 for Navajo and Weber sandstones, respectively. According
to the DZ model, when the cumulative crack porosity reaches an
asymptotic value, the crack porosity can be estimated. Here, the cu-
mulative crack porosity of Navajo sandstone estimated from the static
bulk modulus is 0.084% and the cumulative crack density is 0.88, while
the crack porosity from dynamic data is 0.047% and the crack density is
0.2. For Weber sandstone, the cumulative crack porosity estimated from

Table 1
Fitting parameters for the pressure dependence of the static and dynamic bulk compressibility.

Sandstone Ceff,st R2 Ceff,dy R2

Navajo 0.0489+0.05e-p/0.014 0.8 0.0438+0.0214e-p/0.0208 0.9806
Weber 0.0563+0.5364e-p/0.0111 0.9743 0.0484+0.344e-p/0.0115 0.9896

Table 2
Inversion of the aspect ratio at high differential pressure.

Sandstone αdy
hp Error on (Vp

hp, Vs
hp) αst

hp Error on (Keff,st
hp )

Navajo 0.28 0.07% 0.18 0.09%
Weber 0.11 0.7% 0.08 0.99%

Fig. 5. P- and S-wave velocities as a function of differential pressure for Navajo
sandstone. The solid curve is the fit with the DZ model and the circles are
Coyner4 measurements.

Fig. 6. P- and S-wave velocities as a function of differential pressure for Weber
sandstone. The solid curve is the fit with the DZ model and the circles are
Coyner4 measurements.
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the static bulk modulus is 0.55% and the cumulative crack density is
5.1, while the crack porosity from dynamic data is 0.25% and the crack
density is 1.5. The results show that although the estimated porosities
are different by using the different methods, the values are within a
reasonable range. The cumulative crack porosity and density estimated

from the static bulk modulus are higher than those obtained from dy-
namic data.

The total, stiff and crack porosities of the two rocks as a function of

Fig. 7. Crack porosity as a function of crack aspect ratio for Navajo and Weber
sandstones.

Fig. 8. Cumulative crack porosity as a function of crack aspect ratio for Navajo
and Weber sandstones.

Fig. 9. Cumulative crack density as a function of crack aspect ratio for Navajo
and Weber sandstones.

Fig. 10. Total, stiff and crack porosities as a function of differential pressure for
Navajo and Weber sandstones. The broken line with circles denotes Coyner's4

measurements, the dotted line with triangles denotes the stiff porosity, the solid
and broken lines with diamonds denote the crack porosities from static and
dynamic data, respectively, and the line with squares denotes the fitting curve
of the total porosity based on Pervukhina et al.13.

L. Zhang et al. International Journal of Rock Mechanics and Mining Sciences 113 (2019) 24–30

29



differential pressure are given in Fig. 10. The stiff porosity is estimated
by a linear extrapolation of the high differential pressure data (dotted
line with triangles).13 For Navajo sandstone, the pressure-dependent
total porosity from static data has a correlation coefficient of R2

=0.9933, while the dynamic one is R2 =0.9849. For Weber sandstone,
the correlation coefficients are 0.9820 and 0.9038, respectively.
Moreover, the cumulative stiff porosities of Navajo and Weber sand-
stones are 11.72% and 9.04%, respectively. Then, the results show that
the crack porosity estimated from the static bulk modulus better fits the
data.

The relation between stiffness and differential pressure used by
Zimmerman,20 properly calibrated with experimental data, can be used
to obtain the stress dependence of the elastic moduli and acoustic
properties at different saturations, including full saturation condi-
tions.32 This relation is very useful to model the mechanical deforma-
tions and seismic properties of rocks.

4. Conclusions

We have related the rock elastic properties to the pore micro-
structure by using the Mori-Tanaka theory. The stress-strain relation
(Eq. (15)) has been validated with experimental data of Navajo and
Weber sandstones. Then, a method for estimating the distribution of
aspect ratios from the static bulk modulus is proposed, which is based
on a technique previously used for dynamic moduli. We have obtained
the crack porosity, density and aspect ratio distribution for two sand-
stones from static and dynamic measurements. It is worth noting that
the crack porosity estimated from the static bulk compressibility is
higher than that obtained from dynamic data, which validates the
conclusion that the crack porosity estimated from dynamic moduli is an
underestimation of the true porosity of rocks. This is due to the fact that
the dynamic moduli calculated from ultrasonic measurements are
higher than the static ones derived from stress-dependent porosity
variations. Lower values of dynamic stress sensitivity compared to the
static ones reflect the slower increment of dynamic moduli with pres-
sure compared to static experiments. The difference is important at low
differential pressures, where the static bulk compressibility can exceed
the dynamic one by a factor of two. The method proposed here allows
for a detailed characterization of pore structures in rocks, and it can
also be used to analyze the relation between fabric textures and elastic
properties.
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