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ABSTRACT

The presence of wave loss (velocity dispersion and attenuation
in lossy media) degrades the resolution of migrated images by
distorting the phase and amplitude of the signal. These effects
have to be mitigated to improve resolution. We have developed
a technique to perform reverse time migration of ground-penetrat-
ing radar and SH-seismic data in lossy media, suitable for engi-
neering and seismic applications. The method is based on the
solution of the transverse magnetic (TM) Maxwell equation,
which in view of the acoustic-electromagnetic analogy, is math-
ematically equivalent to the SH-wave equation, where attenuation
is described by theMaxwell mechanical model. Attenuation com-
pensation is performed by reversing the sign of the diffusion term
(first-order time derivative). In this manner, the TM equation has

the same wave-velocity dependence with frequency (same veloc-
ity-dispersion behavior) but opposite attenuation, i.e., compensat-
ing for attenuation effects when back propagating. We have
solved the equations numerically with a direct grid method by
using the Fourier pseudospectral operator for computing the spa-
tial derivatives, and we used an explicit staggered second-order
finite-difference approximation for computing the time derivative.
Four applications illustrated the potential of the algorithm. The
migrated image by correcting for attenuation loss is able to im-
prove the illumination of the target reflectors. This migration is
found to be particularly useful to balance the overall image am-
plitude by illuminating shadow zones. Under the assumption of
low-loss media (e.g.,Q ≫ 1) and thicknesses comparable with or
smaller than the skin depth, the attenuation-compensated migra-
tion is stable.

INTRODUCTION

Ground-penetrating radar (GPR) has become an important shallow
subsurface exploration tool (e.g., Owen, 1995; Miller et al., 2010;
Slob et al., 2010). It has been used for a wide range of engineering
and environmental problems, recently facilitated by the application of
standard seismic techniques, such as multifold coverage and process-
ing (e.g., Bradford, 2006). This high-frequency electromagnetic
(EM) technique is conceptually similar to the seismic reflection
method (Carcione and Cavallini, 1995a), and therefore, many of the
algorithms used in oil exploration can be applied, with minor
modification, to the interpretation of georadargrams. For example,
Zhdanov and Frenkel (1983) propose a method of reverse time con-
tinuation of the EM field, which is analogous to the seismic reverse
time migration (RTM) (Baysal et al., 1983; McMechan, 1983). A
complete overview can be found in Zhdanov (2009).

Radar signals, as well as seismic waves, are affected by loss
mechanisms. In GPR applications, the most important are ionic cur-
rents, related to the electric conductivity. It is well known from lab-
oratory and field data that it is essential to model dissipation effects.
For most rocks, EM Q is lower than seismic Q, implying stronger
loss effects. Mainly, the presence of mineralized water in pores and
fractures is responsible. In the seismic case, the loss effects are de-
scribed by an effective Maxwell viscosity, that represented by a
dashpot in the well-known Maxwell mechanical model composed
of a spring and a dashpot connected in series (Carcione and Cav-
allini, 1995b).
Proper imaging of objects and interfaces require to account for

the attenuation and dispersion effects of the underground, possibly
using prestack depth migration based on a full-wave equation or
using the concept of exploding reflector in the case of poststack
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depth migration (e.g., Baysal et al., 1983; Fischer et al., 1992; Pes-
tana and Botelho, 1997; Di and Wang, 2004; Zhou et al., 2005;
Bradford, 2015). A review of imaging methods, in the case of loss-
less media, is given in Özdemir et al. (2014), where the authors
illustrate and compare different migration algorithms.
Over the past two decades, the seismic community has developed

many migration algorithms using one-way frequency-domain equa-
tions to compensate for attenuation and dispersion effects (e.g.,
Dai and West, 1994; Yu et al., 2002). Recent efforts using two-
way time-domain wave equations have been made. Zhang et al.
(2010) propose a viscoacoustic wave equation for compensating at-
tenuation and phase dispersion effects. Their equation is based on a
constant-Q model (Kjartansson, 1979); i.e., attenuation is consid-
ered to be approximately linear with frequency. Zhu and Harris
(2014) introduce a viscoacoustic wave equation without memory
variables, accounting for attenuation by incorporating a fractional
Laplacian operator in the space-time domain. Zhu et al. (2014) im-
plement the technique to Q-compensated RTM. Later, it has been
applied to seismic field data for delineating a hydrocarbon reservoir
body in west Texas oilfield (Zhu and Harris, 2015). Alternatively,
Dutta and Schuster (2014) use a linearized 2D viscoacoustic wave
equation based on the Zener model, written in the particle velocity-
stress formulation. Its adjoint formula is introduced by Blanch and
Symes (1995). The method is adapted from conventional least-
squares migration (LSM) and reconstructs the earth reflectivity
image from the recorded waveform data under the Born approxi-
mation. Sun et al. (2015) precondition Q-LSM with an inverse vis-
coacoustic operator, which is designed for RTM by Zhu et al.
(2014), so as to speed-up the migration with fast convergence.
On the other hand, there are very limited studies in the GPR com-

munity on this topic. Di and Wang (2004) present a poststack RTM
approach based on the second-order homogeneous Maxwell equa-
tion to consider attenuation and dispersion, but it is not clear if at-
tenuation effect is compensated for during migration. Similarly,
Bradford (2015) develops RTM with topography and conductivity
loss. With normalized crosscorrelation imaging condition, attenua-
tion effects are compensated for forward propagation but not for
backward propagation, thus incomplete compensation (for detailed
explanation, see Zhu, 2016). Sena et al. (2006) solve the Q-com-
pensation migration problem with the split-step Fourier technique in
the frequency domain and introduce a homogeneous plane-wave
approximation to stabilize the algorithm in the presence of attenu-
ation. The approximation holds for waves whose attenuation direc-
tion coincides with the propagation direction, which is not the case
in attenuating media because transmitted waves at an interface
are inhomogeneous. Use of a suitable wave equation is not only
important in RTM but also in full-waveform inversion (FWI), to
build proper high-resolution images of the subsurface (Lavoué et al.,
2014).
This paper presents a theory and algorithm of attenuation-com-

pensated migration based on the TM Maxwell equation in 2D. To
extrapolate radar data back in time with attenuation and dispersion
compensation, the sign of the diffusion term is reversed, which re-
sults in the same velocity dispersion as the Maxwell equation but a
negative Q factor. We show this property numerically in a homo-
geneous medium. To avoid amplifying the high-frequency noise
during the extrapolation, we use a low-pass filter for the attenuation
and dispersion operators in the wavenumber domain. The reverse
time (or exploding reflector) imaging condition is applied for

zero-offset or poststack data and zero-lag crosscorrelation imaging
for prestack data. The resulting RTM images are not affected by loss
effects.
We begin by reviewing the TM equation and analogous SH-wave

equation, introducing the time-reversed TM equation and their at-
tenuation compensated formula, respectively. Then, we describe the
reverse time imaging conditions for poststack and prestack migra-
tions. Finally, we present applications of the migration algorithm.

THE MAXWELL AND SH-WAVE EQUATIONS

We compute synthetic radargrams by using the Maxwell equa-
tion. Let us assume that the propagation is in the ðx; zÞ-plane, and
that the material properties are invariant in the y-direction. Then, Ex,
Ez, and Hy are decoupled from Ey, Hx, and Hz. In the absence of
electric source currents, the first three field components obey the
transverse magnetic (TM) field differential equations (e.g., Car-
cione, 1996a):

∂Ez

∂x
−
∂Ex

∂z
¼ μ

∂Hy

∂t
;

−
∂Hy

∂z
¼ sσEx þ ϵ

∂Ex

∂t
þ Jx;

∂Hy

∂x
¼ sσEz þ ϵ

∂Ez

∂t
þ Jz;

(1)

where t is the time variable, μ is the magnetic permeability, ϵ is the
dielectric permittivity, σ is the conductivity, J denotes electric
sources, and s ¼ 1. The introduction of the quantity s will be clear
below.
Equation 1 corresponds to the SH-wave equation in seismology,

so that the problem solved here also holds for seismic S-waves with
loss. Carcione and Cavallini (1995a) establish the mathematical
analogy between SH- and TM-waves, where the former are S-waves
polarized in the horizontal plane. To apply the analogy, the equiv-
alence is

Hy ⇔ vy;

Ex ⇔ −σyz;
Ez ⇔ σxy;

ϵ ⇔ G−1;

σ ⇔ η−1;

μ ⇔ ρ;

(2)

where vi and σij denote particle velocity and stress components, G
is the shear modulus, η is the viscosity, and ρ is the density. The
resulting SH-wave equation is a generalization of the elastic equa-
tion with the incorporation of the Maxwell mechanical model to
describe the anelastic effects (Carcione [2014], chapter 8). How-
ever, the technique present here can also be applied to the SH-wave
equation described by Zener elements (Carcione and Cavallini,
1995b). The generalization to anisotropy, in the EM and seismic
cases (see equations in Carcione and Cavallini, 1995a), is also
straightforward.
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DISPERSION RELATION AND ATTENUATION
COMPENSATION

Considering a homogeneous medium and ignoring sources,
equation 1 can be written as

∂2Hy

∂t2
¼ 1

ϵμ
∇2Hy − s

σ

ϵ

∂Hy

∂t
; (3)

where the above-mentioned equation simulates TM-waves with
electrical conductivity that describes EM attenuation. A similar
equation 3 can be obtained using the electric-field components. The
second term in the right side corresponds to the attenuation effects,
which indicate the amplitude loss and the dispersion of the waves.
Substituting a Fourier plane-wave kernel into equation 3, yields

the complex velocity (Carcione, 2014)

v ¼ ½ðϵ − isω−1σÞμ�−1∕2; (4)

where ω is the angular frequency. To implement the RTM algo-
rithm, we have to use the Maxwell equation time-reversed. In the
implementation, this procedure is completed by flipping the data in
time. According to the principle of time invariance in attenuating
media (Zhu, 2014), attenuation compensation can be accomplished
by reversing the sign of the first-order time derivative term in equa-
tion 3. Therefore, the forward TM equation and time-reversed TM
equation with attenuation compensation can be obtained from equa-
tion 1 with s ¼ −1. It also states that the TM equation for reverse
time propagation is time-invariant when s ¼ −1.
Let us consider the dispersion relation. Taking s ¼ −1 in equa-

tion 4, the complex velocity is

v ¼ ½ðϵþ iω−1σÞμ�−1∕2: (5)

From equations 4 and 5, the phase velocity and attenuation fac-
tors are (Carcione, 2014)

vp¼½Reðv−1Þ�−1¼
�
μϵ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
σ

ωϵ

�
2

s
þ1

��−1∕2
;

α¼−ωImðv−1Þ¼ sgn

�
μσ

ω

�
ω

�
μϵ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
σ

ωϵ

�
2

s
−1

��1∕2
;

(6)

where sgnðxÞ is 1 when x > 0 and −1 when x < 0, and the quality
factor Q is

Q ¼ Reðv2Þ
Imðv2Þ ¼ ω

ϵ

σ
: (7)

As can be seen, attenuation compensation (s ¼ −1) leads to neg-
ative α and negativeQ ¼ −ωϵ∕σ, and changing the sign of the imagi-
nary part in equation 5 only affects the attenuation Q because the
phase velocity vp remains the same. This is analogous to viscoacous-
tic time-reversal imaging (Zhu, 2014). To show this, we consider the
following example: ϵ ¼ 6 ϵ0, where ϵ0 ¼ 8.85 × 10−12 Fm−1,
μ ¼ μ0 ¼ 4π × 10−7 Hm−1, and σ ¼ 0.1 S∕m. Figure 1 shows
the phase velocity and attenuation factor for the forward and reversed

cases. The velocity is normalized with the light velocity in vacuum,
c0 ¼ 1∕ ffiffiffiffiffiffiffiffiffi

μ0ϵ0
p

. As can be seen, the dispersion effects are the same,
but the attenuation factors have opposite signs. This ensures that
time-reversal modeling recovers the amplitude (Q-compensation),
while preserving the phase velocity of each Fourier component.
The TM equation 1 and its inverse equation (i.e., equation 1 with

s ¼ −1) are the basis of the migration algorithm used to back-
propagate the field vector ðHy; Ex; EzÞ⊤. Boundary (absorbing) con-
ditions are given by the split perfectly matched layer (PML) method
on all sides of the mesh, whose equations are

∂Ex

∂t
þ ϵ−1σEx þ αxEx ¼ −ϵ−1

∂Hy

∂z
;

∂Ez

∂t
þ ϵ−1σEz þ αzEz ¼ ϵ−1

∂Hy

∂x
;

∂Hy1

∂t
þ αxHy1 ¼ μ−1

∂Ez

∂x
;

∂Hy2

∂t
þ αzHy2 ¼ −μ−1

∂Ex

∂z
;

Hy ¼ Hy1 þHy2; (8)

a)

b)

Figure 1. (a) Phase velocity and (b) attenuation factor correspond-
ing to the forward (solid line) and time-reversed (dashed line) equa-
tions. The velocity is normalized with the light velocity in vacuum.
Both wave velocities coincide.

Q-compensated GPR imaging- H23
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where αx and αz are the damping parameters used only within the
PML. Following Yuan et al. (1999) (equation 24), the split field
equation 8 can be transformed into an exponential form that allows
larger attenuation without numerical instability. Equation 8 is
solved with a direct grid method that computes the spatial deriva-
tives using the Fourier pseudospectral method, where the electric Ex

and Ez fields are evaluated on staggered spatial grids (Carcione
et al., 1999). The solution is computed with an explicit staggered
second-order finite-difference approximation of the time derivative.

REVERSE TIME EXTRAPOLATION IMAGING
CONDITION

Stacked or zero-offset data can be simulated with the exploding-
reflector method (Claerbout, 1985) as follows: All reflectors at time
t ¼ 0 are treated as sources in the subsurface, where the wave equa-
tion upward propagates the energy and each receiver records a time
history. On the other hand, the reverse time extrapolation (explod-
ing-reflector imaging) is performed by propagating the recorded
wave energy at the receivers back in time to the sources using half
the wave velocity. Similarly, the reverse time extrapolation is imple-
mented by solving the TM equation. Halving the wave velocity is
achieved by multiplying by four the magnetic permeability μ (see
equation 4), which ensures that the amplitude decay corresponds
to that of the two-way travel path (Carcione et al., 2002). The re-
corded data at the receivers are enforced as a boundary condition,
acting as sources. This extrapolation is continued backward in time
to t ¼ 0, when all depths are imaged simultaneously. The final

image is formulated as IðxÞ ¼ Hyðx; t ¼ 0Þ, where x is the image
location.
To compensate for attenuation losses, we solve the time-reversed

TM equation (setting s ¼ −1 in equation 1) similar to the extrapo-
lation of acoustic waves in attenuating media performed by Zhu
(2014). Similarly, the full RTM imaging condition can be applied
to multiple offset or prestack GPR data. Briefly, this kind of RTM
algorithm, analogous to viscoacoustic RTM, consists of three steps
(Zhu et al., 2014):

1) Forward propagation with equation 1 (s ¼ þ1), obtaining the
source wavefield Sðx; tÞ in the model space, where x is the po-
sition vector (propagation from source to scatter).

2) Back propagation of the measured data with equation 1 (s ¼ −1),
obtaining the receiver wavefield Rðx; tÞ, i.e., use the data as
a boundary condition and propagate it back in time from the
receiver to the scatterer.

3) Application of an imaging condition, e.g., a zero-lag crosscor-
relation condition

IðxÞ ¼
Z

T

0

Sðx; tÞRðx; tÞdt; (9)

where T is the maximum recording time of the data. Deconvo-
lution/source-normalized crosscorrelation imaging condition can
also be used for approximating the reflectivity (Zhu, 2015).

When compensating for attenuation, a prob-
lem is the amplification of high-frequency noise
present in the data. To prevent this, we use a low-
pass filter in the wavenumber domain. The cutoff
wavenumber is calculated from the cutoff fre-
quency based on the maximum phase velocity
of the model. Zhu (2015) shows that using a Tu-
key low-pass filter, the cutoff frequency is more
influential on the image resolution than the taper
ratio. We estimated the suitable cutoff frequency
by identifying the noise in the spectrum of the
observed data.
From the previous analysis (Zhu et al., 2014),

the loss compensation using the EM equation 1 is
able to recover the amplitude loss as in the non-
attenuating case; i.e., the final image will not be
affected by the attenuation if the related proper-
ties are well defined, e.g., by attenuation tomog-
raphy (e.g., Liu et al., 1998; Hinz and Bradford,
2010) or FWI (e.g., Busch et al., 2012; Lavoué
et al., 2014).

GPR EXAMPLES

Homogeneous media

We first consider a homogeneous medium to
show the attenuation effects using the TM equa-
tion 1. Forward propagation is performed with
s ¼ 1. The physical properties and modeling
parameters are ϵ ¼ 10 ϵ0, μ ¼ μ0, the time step
is 0.05 ns, the grid spacing is 0.02 m, and the
mesh is square with 512 points per side. A Ricker
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Figure 2. Snapshots of the Hy wavefield at 25 ns, corresponding to (a) σ ¼ 0 (lossless),
(b) σ ¼ 0.005, (c) σ ¼ 0.01, and (d) σ ¼ 0.005 S∕m, but s ¼ −1.
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wavelet with a central frequency of 300 MHz is used as a source.
Figure 2a–2c shows three snapshots of the Hy component at 38 ns
with σ ¼ 0, 0.005, and 0.01 S∕m, respectively. As can be seen,
there is increasing attenuation with increasing electrical conduc-
tivity. Then, we perform a simulation with s ¼ −1. Figure 2d shows
a snapshot of the Hy component at 25 ns with σ ¼ 0.005 S∕m. The
amplitude is thus amplified compared with Figure 2a.
Let us consider low-loss media, for which Q ≫ 1, i.e., σ ≪ ϵω.

In this limit, the skin depth is d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∕ωσμ

p
. For instance, when

σ ¼ 0.01 S∕m,Q is 11 and the skin depth is 1.68 m. Figure 3 shows
the waveform at five different offsets (0.1, 1, 2, 3, and 4 m). The
waveform is normalized by the peak amplitude at 0.1 m offset. Note
that the peak amplitude at 2 m offset is approximately 0.1 of the
reference one (at 0.1 m). We infer that it is possible to recover the
amplitude when the wave propagates through a layer, whose thick-
ness is comparable or smaller than the skin depth.

Three-layered model

The first test model consists of three layers. The relative dielectric
permittivity model is shown in Figure 4a. There are two high con-
ductivity zones in Figure 4b. The model is discretized with a 401 ×
221 grid and the grid spacing is 0.04 m. We deploy 399 receivers at
a depth of 0.2 m and 98 sources at 0.28 m depth, with a horizontal
spacing of 0.16 m. We implement a Ricker wavelet with central
frequency of f0 ¼ 300 MHz as Jx and Jz sources. The time step is
0.04 ns and the time iterations are 4000. We generate the common-
shot gathers (CSG) of the Hy component by solving the TM equa-
tion (Figure 5a). Then, we extract zero-offset data from all the CSG
data (Figure 5b). Due to the high conductivity in the subsurface, two
shadow zones are observed in the zero-offset data, which can also
be seen in the migrated image.
The image is produced by reversing time extrapolation of the

zero-offset data by solving the TM equation with s ¼ −1 that im-
plies attenuation compensation. We apply the imaging condition at
zero time t ¼ 0; i.e., the wavefields focus at the reflectors. The at-
tenuation compensation is stabilized by applying a frequency-wave-
number Tukey low-pass filter with 600 MHz and a taper of 0.2. The
cutoff frequency 600 MHz is chosen as the highest frequency for
the filtered signal. Figure 6a shows the image by extrapolating zero-
offset data without considering the conductivity (lossless equation),
whereas Figure 6b shows the compensated imaging by extrapolat-
ing zero-offset data by considering the conductivity. The shadow
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Figure 3. Waveforms at five different offsets: 0.1, 1.0, 2.0, 3.0, and
4.0 m. We choose σ ¼ 0.01 S∕m and the other properties are the
same as in Figure 2. The amplitude is corrected for geometrical
spreading (by

ffiffiffi
r

p
in 2D, where r is the propagation distance).
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Figure 5. Synthetic radargrams of (a) the magnetic fieldHy (CSG),
and (b) zero-offset data extracted from all the CSGs.
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zones in Figure 6a are recovered with improved illumination, and
the amplitude is balanced between the highly conducting areas and
the weakly conducting areas. In the shallow part, the first reflector is
well imaged with both methods because low conductivity has less
influence on the wave amplitude.
Figure 7 compares seismic traces at a 5 m horizontal distance,

corresponding to the migrated images shown in Figure 6, with a
reference image. The red line refers to the reference trace corre-
sponding to the lossless case. The green line refers to the trace in
Figure 6a using the conventional lossless imaging method, failing to
recover the amplitudes and correct the dispersion effects. These
differences could provide the basis of FWI of EM attenuation.
The dashed black line corresponds to the trace in Figure 6b using
the proposed algorithm with attenuation compensation. Compared
with the reference trace (red), amplitude and phase of wavefield
were recovered. Figure 7b and 7c shows details of the upper and
lower events, respectively.
The spatial frequency content of all three traces is shown in Fig-

ure 8. We can see that the trace corresponding to the conventional
migration lacks high wavenumbers (green curve). By compensa-
tion, high wavenumbers are almost fully recovered (black curve).
Therefore, we conclude that the compensated image exhibits higher
resolution than that without compensation.

Roadbed with cavity

In the second example, we consider an engineering application.
The model represents an old concrete road overlying a cavity
(Figure 9). Some of the material properties are taken from Lau et al.
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Figure 6. Migrated images. (a) Conventional (lossless) imaging;
(b) the proposed imaging algorithm with attenuation compensation.
Images are displayed in the same scale.
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Figure 7. (a) Comparisons of traces (at 5 m) of two migrated im-
ages in Figure 6 with the reference trace (red line) computed by
migration of nonattenuated GPR data. The details can be seen in
panels (b and c). The dashed black line refers to the trace in Fig-
ure 6b using the proposed algorithm. The green line refers to the
trace in Figure 6a using the conventional imaging.
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Figure 8. Wavenumber content of three traces in Figure 7.

Table 1. Relative permittivity and electrical conductivity values
of the road subsurface model in Figure 9.

Materials
Relative permittivity

ðϵ∕ϵ0Þ
Conductivity

(S∕m)

Asphaltic concrete 3.8 0.006

Portland concrete 5.3 0.009

Asphalt 5.1 0.0006

Air 1 0

Rainwater 4.34 0.003

Limerock 5.8 0.009

4High-frequency permittivity (see equation 4 in Carcione, 1996b).
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(1992) who conducted the field experiment (also see Carcione,
1996b). The dielectric permittivity and conductivity properties are
given in Table 1. The cavity is filled with: case 1: air, ϵ ¼ ϵ0,
σ ¼ 0, and case 2: rainwater, ϵ ¼ 4.3 ϵ0, σ ¼ 0.003 S∕m. Note that,
in the shallow zone (z < 0.8 m), the high conductivity attenuates the
reflections from the cavity and other interfaces.

The field is initiated by an electric current source. The source
function is a Ricker wavelet with a central frequency of 1 GHz,
and is propagated with a time step of 0.02 ns. The numerical mesh
has 201 × 111 grid points, with a uniform grid spacing of 2 cm. We
have 48 sources and 199 receivers distributed along the surface with
a depth of 0.2 m.
Case 1 is the air-filled cavity. Figure 10a represents the Hy-com-

ponent radargram muting the direct wave. The shot location is at the
horizontal distance of 2.02 m. The first and second reflection hyper-
bolae correspond to the bottom of the asphaltic and Portland
concrete layers, respectively. The hyperbola corresponding to the
base of the asphalt layer interferes with the response generated
by the bottom of the cavity (at approximately 12 ns), a response
that has longer wavelength and shorter traveltime. Similar to the
first example, we also extract zero-offset data (see Figure 10b) from
the CSG magnetic data.
Figure 11a shows the image by extrapolating the zero-offset data

without considering conductivity (lossless equation). The first layer
is well-imaged and the top of the cavity is also imaged. The rings
near the reflectors are multiple reflections from the reverse time
extrapolation. The image of the bottom of Portland concrete is very
weak. Figure 11b shows the compensated imaging by extrapolating
zero-offset data by considering the conductivity. Overall, the ampli-
tude is recovered and the reflectors are more clearly imaged, e.g.,
the first reflector, the base of Portland concrete, and the asphalt
layers. Image artifacts are also amplified during the attenuation
compensation. The attenuation compensation is stabilized by apply-
ing a frequency-wavenumber filter with 2 GHz and a taper of 0.2, so
as to avoid amplifying high-frequency noises.

Figure 9. The geometry of the road subsurface model containing a
cavity. The cavity is filled by either air (case 1) or rainwater (case 2).
Electrical properties are given in Table 1.
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Figure 10. (a) Magnetic field radargram and (b) its corresponding
zero-offset data for case 1.
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Figure 11. Migrated images of case 1. (a) Conventional imaging;
(b) the proposed imaging algorithm with attenuation compensation.
Images are displayed in the same scale.
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For case 2 (void filled with rainwater), Figure 12 displays the
Hy-component radargram and zero-offset data, respectively. Rain-
water has a relatively high conductivity such that the base of the
cavity is not well imaged in Figure 13a. By applying attenuation
compensation, Figure 13b shows that the amplitude of the reflectors
are recovered, especially the base of the void.

High conductivity water-filled layer model

The third example considers a high conductivity water-filled layer
model; generally, strong radar attenuation in the water-filled reservoir
prevents from reflecting at the base. The dielectric permittivity and
conductivity models are shown in Figure 14. The magnetic per-
meability is μ ¼ 4μ0. The second layer has high conductivity, espe-
cially the left corner (the lowest quality factor Q is approximately
23), which dramatically attenuates reflections from the base reflector
in the left side. As can be seen, this high-attenuation area prevents the
imaging of the bedrock interface.
The grid size is 1001 × 399 and the cell spacing is 0.04 m.We use

999 receivers on the surface at a depth of 0.2 m to record the radar-
gram and the sampling rate is 0.04 ns. The total recording length is
180 ns. For simplicity, we generate zero-offset Hy-component data
using the exploding reflector modeling method. Absorbing boun-
dary conditions are applied in all the simulations.
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Figure 12. (a) Magnetic field radargram and (b) its corresponding
zero-offset data for case 2.
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Figure 13. Migrated images of case 2. (a) Conventional imaging;
(b) the proposed imaging algorithm with attenuation compensation.
Images are displayed in the same scale.
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Figure 14. Relative permittivity, conductivity, and Q models of the
glacier lake. Zone A exhibits high conductivity and low Q (strong
attenuation).
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Figure 15a shows the zero-offset data, and Figure 16a shows the
imaging with the lossless equation, where dim reflectors caused by
the high conductivity (attenuation) in the second layer can be ob-
served. The bottom of the second and third layers disappear in the
left side, while exhibit a weak energy in the right side. By applying
attenuation compensation, the second and third reflectors are signifi-
cantly enhanced as shown in Figure 16b. This image amplitude is
balanced when the left shadow zone is illuminated. The attenuation
compensation is stabilized by applying a frequency-wavenumber fil-
ter with 800 MHz and a taper of 0.2. The above experiment assumes
that the conductivity is known from data analysis or attenuation
tomography. If the conductivity is uncertain, e.g., underestimated as
half the true conductivity of the second layer, we found that the image
still improves (see Figure 16c). This means that attenuation compen-
sation with an uncertain conductivity still improves the illumination
of the interfaces compared with the images with zero conductivity.
This new migration algorithm may be very useful for detecting the
interface in such a high-attenuation model.
To test the tolerance of our migration algorithm to incoherent

noise, we contaminate the zero-offset data with Gaussian random
noise. Two noisy data have the signal-to-noise ratio − S∕N ¼
20 dB in Figure 15b and S∕N ¼ 10 dB in Figure 15c. At the right
side of Figure 15b and 15c, we show comparisons of traces (black) at
the horizontal distance of 20 m to that of Figure 15a (gray). We repeat
the migration process. Figure 17a and 17b shows the final images.

Although it is slightly contaminated by random noise, the bottom
reflectors are enhanced and easily identified.
Incorporating the attenuation compensation into the migration al-

gorithm may cause the numerical instability problem. We point out
that this problem is partially solved by filtering the higher wave-
numbers during the extrapolation. However, the filter may not guar-
antee the stability of attenuation compensation. Two factors, Q and
skin depth are critical. When Q is high and thus the skin depth
is larger, attenuation compensation tends to be stable. When Q is
small and the skin depth is small, wave propagation with attenuation
compensation may be unstable. As observed by Sena et al. (2006),
attenuation compensation may be only useful for low-loss (low con-
ductivity), i.e., media with conductive zones whose thicknesses are
comparable with their characteristic skin depths computed at the
dominant frequency of the radar signal.

SH-WAVE EXAMPLE

The last example illustrates SH-wave imaging based on the meth-
odology presented above. Using the analogy between SH-wave
equation and TM Maxwell equation (see equation 2), we assign
the corresponding parameters G and η. Following Carcione and
Cavallini (1995a), the quality factor of SH-wave is QSH ¼
ωη∕G. The velocity and Q-factor models are shown in Figure 18a
and 18b, respectively, where QSH is defined at the reference fre-
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Figure 15. (a) Zero-offset magnetic field radargram computed with the exploding reflector method. (b) Noisy zero-offset radargram
(S∕N ¼ 20 dB). (c) Noisy zero-offset radargram (S∕N ¼ 10 dB). The side of noisy data panels (b and c) shows comparisons of radar traces
at the horizontal distance of 20 m between (a) noise-free data in gray and noisy data in black.
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quency of 30 Hz. The Q2 layer has strong attenuation, which affects
the reflections from the base of the V1 and V2 layers. The cell spac-
ing is 5 m. We locate 598 receivers at a depth of 25 m to record the
seismogram. The time step is 0.5 ms and the total time step is 4500.
We use a Ricker source wavelet with a central frequency of 30 Hz.
A CSG (100th shot at the horizontal distance of 1.5 km) is shown in
Figure 18c, where the reflection from the base of the V1 layer is
relatively weaker in the left side than in the right side. Very weak
reflections at 1.5 s from the base of the V2 layer are also observed.
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Figure 16. Migrated images by (a) conventional imaging algo-
rithm; (b) the proposed attenuation compensated imaging algorithm
with the true conductivity model; and (c) the proposed imaging
algorithm with attenuation compensation but using half the true
conductivity of zone A in Figure 14. All images are displayed in
the same scale.
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Figure 17. Migrated images computed by the proposed imaging
algorithm with attenuation compensation but using noisy data
(a) S∕N ¼ 20 dB and (b) S∕N ¼ 10 dB, which are shown in Fig-
ure 15. The images are displayed in the same scale as Figure 16.
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Figure 18. (a) SH-wave velocity and (b) Q model defined at the
central frequency of 30 Hz. (c) A typical CSG (100th shot at the
horizontal distance of 1.5 km).
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Note that the top reflection is caused by the contrast between the Q1
and Q2 layers.
The imaging procedure is different from the above GPR exam-

ples. Instead of poststack (zero-offset) RTM, we use prestack RTM;
i.e., we apply attenuation compensation for forward propagated
source-wavefield and backward propagated receiver-wavefield. The
corresponding imaging condition is equation 9. By applying the im-
aging approach, the resultant images are shown in Figure 19. With-
out attenuation compensation, the image only preserves the top
reflectors (Figure 19a). Interestingly, the left side of V1 disappears,
and the right side is preserved. With attenuation compensation, all
reflectors appear. The left side of V1 is enhanced, and the base of
V2 is clearly illuminated. Some migration artifacts are seen in the
left corner, partially because of limited aperture and the nature of the
finite-difference grid model (see Figure 18a).

CONCLUSION

We propose a RTM algorithm for GPR data to obtain optimal
focusing (imaging) of objects and interfaces, taking into account
the dispersion and attenuation effects. The back-propagation equa-
tions are obtained from the TM Maxwell equations, where the time
variable has a negative sign. This compensates for the loss signal
energy during the propagation, recovering the amplitudes, while it
keeps the dispersion properties of Maxwell equations. This imaging

algorithm, similarly to seismic RTM, can easily be implemented in
the 3D case.
The applications illustrate the feasibility of the proposed migra-

tion algorithm in the presence of high attenuation. With these ex-
amples, we are optimistic that attenuation compensation is very
useful for imaging shadow zones due to high attenuation (high con-
ductivity). Moreover, the method has applications in seismic explo-
ration with S-waves because by virtue of the acoustic-EM analogy,
the equations also describe SH-wave propagation with attenuation.
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Figure 19. Migrated images by (a) conventional imaging without
attenuation compensation, and (b) the proposed attenuation com-
pensated imaging algorithm. Two images are displayed in the same
scale.
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