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Abstract: The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors 
substantial oil and gas resources and has recently emerged as the primary focus of unconventional 
oil and gas exploration and development. Due to its complex pore and throat structure, pronounced 
heterogeneity, and tight reservoir characteristics, the techniques for conventional oil and gas 
exploration and production face challenges in comprehensive implementation, also indicating 
that as a vital parameter for evaluating the physical properties of a reservoir, permeability cannot 
be effectively estimated. This study selects 21 tight sandstone samples from the Q area within 
the shale oil formations of Ordos Basin. We systematically conduct the experiments to measure 
porosity, permeability, ultrasonic wave velocities, and resistivity at varying confi ning pressures. 
Results reveal that these measurements exhibit nonlinear changes in response to eff ective pressure. 
By using these experimental data and eff ective medium model, empirical relationships between P- 
and S-wave velocities, permeability and resistivity and eff ective pressure are established at logging 
and seismic scales. Furthermore, relationships between P-wave impedance and permeability, and 
resistivity and permeability are determined. A comparison between the predicted permeability and 
logging data demonstrates that the impedance–permeability relationship yields better results in 
contrast to those of resistivity–permeability relationship. These relationships are further applied 
to the seismic interpretation of shale oil reservoir in the target layer, enabling the permeability 
profi le predictions based on inverse P-wave impedance. The predicted results are evaluated with 
actual production data, revealing a better agreement between predicted results and logging data and 
productivity.
Keywords: shale oil reservoir, P-wave impedance, resistivity, permeability, rock physics 
experiment

Introduction

With the growing need for oil and gas resources as 
a result of societal advancement and the depletion of 

conventional oil and gas reserves, unconventional oil 
and gas reservoirs have emerged as a primary area of 
research at the strategic level for many countries (Lai 
et al., 2022; Hosseiny and Mohseni, 2023). Shale oil, 
as a sort of unconventional hydrocarbon resources, 
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is considered with abundant reserves and extensive 
distribution, and is potentially treated as a prospective 
cornerstone for future reserve growth (Liu et al., 2022; 
Shi et al., 2021; Zhang et al., 2023; Zhao et al., 2023). 
The shale oil resources of China are predominantly 
distributed into the Songliao, Ordos, Junggar, Qaidam, 
and Fushun Basins (Jia et al., 2012). The Chang 7 
Member of the Ordos Basin, as the principal stratum 
for shale oil exploration and development, exhibits 
a complex pore and throat structure and substantial 
heterogeneity with tight rocks. These complexities lead 
to the signifi cant challenges for the eff ective prediction 
and exploitation of shale oil reservoirs (Yang et al., 
2013).

In recent years, many scholars have probed into the 
shale oil reservoir prediction methods. Guo et al. (2013) 
introduced the construction process of a shale rock 
physics model, considering mineral components and 
pores characterized by isotropic and preferred orientation 
distributions. They explored the impacts of clay 
particle orientation preferences on seismic properties, 
geomechanics, and the brittleness index. Deng et al. 
(2015) analyzed the microscopic pore structure of the 
Longmaxi Formation shale using scanning electron 
microscopy and computed tomography scanning imaging 
techniques. They proposed a seismic rock physics 
model combined with the acoustic wave experiments, 
indicating the role of skeleton composition minerals, 
total organic carbon content, and porosity in changing 
the elastic properties. Zhang et al. (2015) presented a 
shale rock physics model by analyzing mineral, porosity, 
fluid, and anisotropy features of shale formations and 
predicted the S-wave velocity and minimum horizontal 
stress of shale formation. Zhang et al. (2016) developed 
a rock physics model to describe the intrinsic anisotropy 
of shale with the Backus averaging, self-consistent, and 
diff erential eff ective medium models. They analyzed the 
influences of clay minerals, crack-like pores, kerogen 
and their preferred orientation on the elastic anisotropy. 
Tomski et al. (2022) analyzed the crucial characteristics 
of unconventional Bakken shale reservoirs using 3D 
seismic and logging data and estimated the total porosity 
of the formation by applying the prestack seismic 
inversion results. Cai et al. (2023) characterized the 
pore structure and fluid distribution in deep marine 
shales for the Longmaxi Formation of southern Sichuan 
with low-temperature nitrogen adsorption, scanning 
electron microscopy, and nuclear magnetic resonance 
experiments.

Permeability is a pivotal parameter for evaluating 
the potential associated with oil and gas reservoir 
exploitation. Establishing a quantitative relationship 
between permeability and reservoir petrophysical 
properties at logging or seismic band is critical for 
an efficient shale oil production. This relationship 
was initially derived based on experimental data. For 
instance, Timur (1968) experimentally measured the 
permeability, porosity, and residual water saturation of 
155 sandstone samples from various North American 
oil fi elds, establishing a rational relation for estimating 
sandstone permeability, and suggesting that an empirical 
relation can be the most effective approach regarding 
this purpose. Walls (1982) analyzed the impact of pore 
pressure, confining pressure and partial saturation on 
permeability through a series of experiments, concluding 
that permeability decreases with increasing effective 
pressure (confining pressure minus pore pressure) or 
water saturation. Yale (1984) quantifi ed the permeability 
and electrical conductivity of tight sandstones under 
varying effective pressures and revealed that both 
properties substantially decline with increasing pressure. 
Prasad (2003) proposed a relationship between sonic 
logging velocity and permeability by categorizing rocks 
into the hydraulic power units, which was verifi ed with 
the extensive laboratory data. Benson et al. (2006) 
investigated the effects of microstructure on elastic 
anisotropy and transport properties by conducting 
rock physical experiments on basalt and granite. They 
compared laboratory measurements with predictions 
from an effective permeability model, successfully 
elucidating the permeability and porosity variation 
patterns under pressure. Katayama et al. (2020) analyzed 
the relative variation of permeability profi les within the 
crust–mantle sequences of Samail ophiolite based on 
the experimentally-measured resistivity data from dry 
and saturated rocks and the effective medium theory. 
Lu et al. (2023) investigated the potential relationships 
between permeability, porosity, and aspect ratios of 
pores and cracks in artificial sandstones with similar 
porosities but diff erent permeabilities, according to the 
rock experiments and a double porosity model. They 
found that compliant porosity is the primary infl uence of 
the sandstone permeability divergence.

By considering that the relationship between 
permeability and physical properties of rocks established 
with experimental data may be nonunique, it cannot 
be directly applied to logging or seismic scales. 
Subsequently, Coates and Dumanoir (1974) proposed the 



3

Zhang et al.

relationship between porosity and formation resistivity at 
irreducible water saturation and provided a methodology 
for deriving permeability from logging data. Based 
on the multiple regression analysis, Khandelwal 
and Ranjith (2010) established a statistical model to 
connect petrophysical logging responses with formation 
permeability. Slagle and Goldberg (2011) presented a 
novel approach to compute porosity from resistivity 
logging data and estimated permeability at Site 1256 
of the shallow oceanic crust through an empirical 
porosity–permeability relationship. Al-Dughaimi et 
al. (2021) measured porosity, permeability, and P- 
and S-wave velocities of 18 tight sandstone samples 
subjected to varying eff ective pressures and established 
the permeability–stress, porosity–stress, and velocity–
stress relations based on the experimental data. They 
derived the relationship between acoustic impedance 
and permeability. However, the relation was not 
evaluated with the actual data from logging or seismic 
bands. Zhang et al. (2022) analyzed the variations 
of measured formation resistivity data with different 
permeabilities during various periods. They proposed 
a permeability modeling approach based on the time-
shifted resistivity logging data without considering the 
variations in relative permeability curves across diff erent 
reservoirs. Roberto et al. (2023) developed an iterative 
geostatistical seismic inversion method, by combining 
the precalibrated rock physical models and geostatistical 
modeling methods. They employed seismic data to 
predict reservoir permeability but did not extend this 
work to the prestack seismic inversion.

Neural network methods off er substantial assistances 
for estimating permeability from geophysical logging 
responses (Rezaee et al., 2008). Helle et al. (2001) used 
a back propagation neural network (BPNN) simulation 
to predict permeability by incorporating density, gamma 
rays, neutron porosity, and sonic wave velocity as input. 
Yasin et al. (2018) introduced a method combining 
neural network (NN), multiple variable regression, and 
classification of data mining to estimate permeability 
from conventional logging data, while it is failed for 
the highly-heterogeneous reservoirs. Khalifah et al. 
(2019) predicted permeability within tight carbonate 
reservoirs by using the artificial neural networks and 
genetic algorithms, where the input parameters included 
porosity, pore throat size, and formation factors. 
Zhao et al. (2022) estimated the permeability of low-
permeability sandstone reservoirs with logging data, 
by applying 7 machine-learning methods, including 

linear regression, back propagation neural network 
regression, k-neighbors regression, random forest 
regression, support vector machine regression, gradient 
boosting decision tree regression, and extreme gradient 
boosting (XGBoost) decision tree regression. Their 
study successfully predicted the continuous permeability 
profile of a well. Mulashani et al. (2022) introduced 
a data managing approach based on the reformulated 
Levenberg–Marquardt (LM) method, where the input 
variables include natural gamma ray, eff ective porosity, 
shale volume, and thermal neutron porosity logging data. 
The accuracy of log permeability prediction is improved. 
Nevertheless, these methods depend on the reliability of 
data and require suffi  cient time for network training and 
testing.

By expanding the work of Al-Dughaimi et al. 
(2021), this study selects 21 tight sandstone samples 
from the shale oil formations of Ordos Basin Q area 
and measures the porosity, permeability, ultrasonic 
velocities, and resistivity under varying pressures. With 
the experimental data, relationships between P-wave 
impedance–permeability and resistivity–permeability at 
logging and seismic scales are established. Subsequently, 
these relationships are applied to well logging and 
seismic data for testing and the comparative analysis.

Geological background and general 
situation of the work area

The Ordos Basin is one of the most crucial oil-bearing 
basins of China, located at the intersection of the eastern 
and western tectonic regions, where the target formation 
is the Chang 7 member of the Yanchang Formations in 
the Q area, which is located at the southern segment of 
the basin. It can be further divided into Chang 71, 72, 
and 73 layers from top to bottom. The samples of this 
experiment are primarily collected from the Chang 71 
and 72 layers. These reservoirs predominantly comprise 
fine-grained clastic rocks, with Chang 71 and 72 layers 
consisting mainly of silt-fine sandstones interbedded 
with mud/shale.

Experimental samples and processes

1. Experimental samples
The porosities (permeabilities) of experimental 
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samples range from 3.56% (0.005 mD) to 10.16% 
(0.096 mD). X‐ray diffraction analysis indicates that 
mineralogical composition (Table 1) mainly comprises 

quartz, feldspar, plagioclase and clay. Furthermore, thin 
sections of samples 1 and 2 show that there are pores 
and cracks in these samples (Figure 1).

Table 1 Physical properties and mineral composition of rock samples

Number Core 
number

Density 
(g/cm3)

Porosity 
(%)

Permeability
(mD)

Quartz
(%)

Feldspar 
(%)

Plagioclase 
(%)

Calcite 
(%)

Ankerite 
(%)

Dolomite 
(%)

Siderite 
(%)

Pyrite 
(%)

Clay 
(%)

1 1-2 2.41 9.252 0.072 57.80 5.45 19.75 2.91 - 5.88 1.99 - 6.22
2 1-3 2.44 9.201 0.038 56.15 5.20 19.33 3.85 - 5.68 2.67 - 7.12
3 1-5 2.48 7.259 0.015 57.11 4.71 20.88 1.96 - 6.92 1.82 - 6.60
4 1-8 2.49 6.376 0.018 52.42 5.66 21.60 6.78 - 5.69 1.62 - 6.23
5 1-10 2.54 5.625 0.006 48.97 7.70 15.43 0.31 11.46 10.12 0.91 - 5.10
6 1-12 2.49 7.220 0.020 48.59 7.90 18.66 2.02 6.96 8.95 1.05 - 5.87
7 1-17 2.44 5.208 0.012 50.93 9.05 22.42 3.08 2.88 4.77 0.75 - 6.12
8 1-19 2.44 5.065 0.018 52.35 6.20 25.35 4.17 2.37 3.43 0.54 - 5.59
9 1-20 2.57 4.491 0.033 47.73 6.40 17.91 1.96 2.72 6.65 1.05 0.35 15.23
10 1-23 2.41 8.998 0.078 56.81 8.39 21.24 1.10 - 7.05 0.80 - 4.61
11 1-24 2.47 7.674 0.074 49.46 8.20 26.36 2.91 - 6.99 0.89 - 5.19
12 1-28 2.46 7.547 0.043 60.78 6.96 21.72 2.15 0.93 1.15 1.80 0.17 4.34
13 1-29 2.51 5.787 0.020 52.47 7.60 22.47 2.34 2.77 3.32 1.19 - 7.84
14 1-30 2.53 5.278 0.005 50.95 6.71 19.96 1.96 2.23 4.82 2.41 - 10.96
15 2-1 2.48 7.327 0.019 55.40 6.26 19.81 2.06 2.60 6.30 1.72 - 5.85
16 2-2 2.57 4.819 0.017 53.87 6.84 18.08 2.91 3.15 6.82 1.17 - 7.16
17 2-3 2.41 8.847 0.065 56.77 7.23 21.26 1.96 1.34 2.91 2.98 - 5.55
18 2-4 2.41 6.156 0.016 42.46 6.92 13.65 0.99 20.46 9.99 0.52 0.39 4.62
19 2-5 2.44 7.787 0.042 51.06 8.78 21.27 6.60 2.03 3.33 1.64 - 5.29
20 2-6 2.48 5.235 0.015 40.44 9.37 19.84 20.81 2.46 2.91 0.71 - 3.46
21 2-10 2.49 8.791 0.056 55.69 4.61 20.79 4.16 2.33 5.47 0.86 - 6.09

Figure 1. Thin sections of tight sandstone samples 1 (a, b) and 
2 (c, d) in the target formation; the blue area indicates the pore space.

(a)

(c)

(b)

(d)
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2. Experimental processes
(1) Porosity and permeability measurements

Porosity and permeabil i ty measurements are 
conducted by using a helium porosimeter permeameter 
based on the pulse attenuation method (Yang and Dong., 
2017), where porosity is determined by using the helium 
expansion method, and permeability by using the 
unsteady-state pulse transient decay technique corrected 
by the Klinkenberg slippage eff ect (Klinkenberg, 1941). 
During the experiment, the confining pressures are 
sequentially set at 5, 15, 25, 35, and 45 MPa, and the 
pore pressure is maintained a constant value of 0 MPa. 
The temperature is held at room temperature (~20°C).

(2) Ultrasonic velocity measurements
Ultrasonic velocity experiments are performed at room 

temperature (~20°C) by using nitrogen as the pore fl uid. 
The confi ning and pore pressures are initially increased 
to 5 MPa, and the latter remains constant. To prevent 
uneven distribution of pore pressure within the sample 
induced by excessively rapid confi ning pressure loading, 
the former is loaded with a stress rate of 0.1 MPa/min 
to Pc = 60 MPa, where they are set at 5, 10, 20, 30, 40, 
50, and 60 MPa, and then unloaded to Pc = 5 MPa at 
the same rate. To allow for pore pressure equilibrium, 
the system stands still for a duration ranging from 30 

minutes to 2 hours after each loading is completed. The 
P- and S-wave velocities of the samples are measured 
using ultrasonic sensors.

(3) Resistivity measurements
Resistivity measurements are implemented by using 

the two-electrode method. The procedure involves 
calibrating the resistivity probe. Subsequently, the 
samples, saturated by the water containing 5% NaCl, 
are installed with a pressurized unit. The confining 
pressures are 3, 5, 15, 25, 35, and 45 MPa, and the pore 
pressure remains at 0 MPa. The temperature is held at 
room temperature (~20°C). After achieving pressure 
stabilization, the electrical instrument is engaged for 
measurements. Voltage adjustments are made for 
repeated measurements, and the resistivity of the sample 
is subsequently calculated.

3. Experimental results
(1) Porosity and permeability

Figures 2a and 2b illustrate the porosity (φ ) and 
permeability (κ ) of 21 samples under diff erent eff ective 
pressures. As is expected, the porosity and permeability 
demonstrate nonlinear decreases within the low eff ective 
pressure range as the effective pressure increases. 
Conversely, they exhibit nearly linear decreases within 

Figure 2. Porosity (a) and the decimal logarithm of permeability (b) as a function of effective pressure, and the decimal logarithm 
of permeability as a function of porosity (c); the red circle denotes the arithmetic averages of the measurements.
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the high effective pressure range. This behavior can 
be attributed to the gradual closure of cracks with low 
aspect ratios in the rocks with increasing pressure (Walsh, 
1965; Watanabe et al., 2019; Zhang et al., 2022). Figure 
2c shows the relationship between permeability and 
porosity, demonstrating that permeability increases with 
increasing porosity. Moreover, the decimal logarithm 
of permeability presents a better linear correlation with 
porosity.

Following the work of Al-Dughaimi et al. (2021), the 
relationships between the arithmetic averages of porosity 
and permeability (decimal logarithm) and effective 
pressure are established as

10log 1.123 2.051
45
P ,                   (1)

 
0.09275 1.153

4510
P

,                           (2)

where the dimension of permeability (eff ective pressure) 
is mD (MPa). The relationships are compared with those 
observed in tight gas sandstones, as provided by Al-
Dughaimi et al. (2021):

10log 2.3718 0.0495
50
P ,              (3)

 
0.79 1.64

500.035 10
P

.                      (4)

The comparative results are illustrated in Figure 3, 
indicating that these relationships are highly similar in 
the two cases. Moreover, the relative errors between the 
arithmetic averages of the measured data and the fi tted 
results are all less than 1%. The red circles in the fi gure 
signify the average values of porosity and permeability 

of the measured samples. The average porosity 
(permeability) decreases from 6.58% (3.2 mD) to 5.74% 
(2.4 mD). Although the microcracks are well-developed 
within the rocks, they exhibit poor connectivity. 
Additionally, the rocks contain a certain amount of 
clay minerals, and are relatively tight. These factors 
contribute to the insensitivity of both parameters to 
pressure variations. Moreover, Al-Dughaimi et al. (2021) 
also employed the Kozeny–Carman equation (Mavko et 
al., 2009) to establish an empirical relationship between 
the decimal logarithm of permeability and porosity:

10 10log 4.95 3log 0.035 .             (5)

Similarly, a relationship is deduced from the 
measurements in this study as

10 10log 2.7 3log 0.046 ,             (6)

where the percolation porosity in Equation (6) is 0.046, 
slightly larger than 0.035 of Equation (5) provided by 
Al-Dughaimi et al. (2021). Typically, the percolation 
porosity ranges from 0.02 to 0.05 (Mavko et al., 1997).

(2) Ultrasonic velocities
Figure 4 shows P- and S-wave velocities (Vp and Vs) 

and Poisson’s ratio (v) as a function of the effective 
pressure during unloading. Results reveal a rapid 
increase in velocity at low effective pressures, while 
at high effective pressures, velocity exhibits a linear 
increase, which is also related to the presence of cracks 
in the rocks. The average P-wave velocity increases 
from 4.28 km/s to 4.89 km/s, whereas the average 
S-wave velocity increases from 2.77 km/s to 3.08 km/
s. In contrast, Poisson’s ratio exhibits a gradual increase 
as the pressure increases, with minimal fluctuations 
observed across the entire pressure range. It is 

Figure 3. Arithmetic averages of porosity (a) and decimal logarithm of permeability (b) as a function of the effective pressure; 
arithmetic average of porosity as a function of decimal logarithm of permeability (c); the blue circles denote measurements of 
Al-Dughaimi et al. (2021); the red circles correspond to the measurements of this study; the dashed line represents the fi tting 

relationship.
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Figure 4. P- (a) and S-wave velocities (b), and Poisson’s ratio (c) as a function of effective stress; the red circles represent the 
arithmetic averages of the measurements.

noteworthy that, except for sample 2-6, Poisson’s ratios 
of the experimental samples mainly fall within the range 
of 0.12 to 0.20. This range is similar to Poisson’s ratio 
distribution (0.05–0.20) reported for tight sandstones in 
the study by Al-Dughaimi et al. (2021). The diff erence 
can be attributed to the higher calcite content with 
0.29–0.32 of Poisson’s ratio, in sample 2-6 compared to 
the other samples (Table 1). Consequently, it results in 
the Poisson’s ratio distribution range of 0.23–0.25 for 
sample 2-6, which is greater than the values observed in 
the other samples.

To establish the relationship between elastic wave 
velocities and porosity/permeability of tight sandstone 
samples, the measured porosity and permeability are 
resampled based on the eff ective pressures employed in 

the ultrasonic experiments. Figures 5a and 5b illustrate 
the P- and S-wave velocities as a function of porosity. 
Results show that the velocities decrease with increasing 
porosity. Throughout the unloading process, the average 
porosity increases from 0.056 to 0.07, and the average 
P- (S-) wave velocity decreases from 4.89 (3.08) km/s to 
4.28 (2.77) km/s. Figures 5c and 5d show the variations 
in P-wave and S-wave velocities versus the logarithm 
of permeability. Velocities decrease with increasing 
permeability, accompanied by a corresponding increase 
in the average permeability from 2.067 mD to 3.292 mD. 
Figures 5e and 5f display porosity/permeability with 
respect to P-wave impedance. Permeability and porosity 
decrease with increasing impedance. The comparison 
with the arithmetic averages of corresponding parameters 
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presented by Al-Dughaimi et al. (2021) (black curves) 
shows that the variation trend of the experimental data 
in this study is consistent with that of their samples. The 
red curves of Figures 5a–5d indicate that in contrast 
to porosity, permeability exhibits a more substantial 
response to the changes in P-wave velocity, and the slope 
of the impedance–permeability relationship (Figure 5f) 
is larger than that of the impedance–porosity relationship 
(Figure 5e).

(3) Resistivity
Figure 6a shows resistivity as a function of eff ective 

pressure. Furthermore, resistivity exhibits nonlinear 
variations with increasing effective pressure, which 
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The average resistivity increases from 25.89 Ω·m to 
60.11 Ω·m. Figures 6b and 6c depict the relationship 
between porosity/permeability and resistivity. Porosity 
and permeability decrease as resistivity increases. 
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Figure 6. Resistivity (a) as a function of effective pressure, and porosity (b) and decimal logarithm of permeability (c) as a 
function of resistivity. The red circles represent the arithmetic averages of the measurements.

Figure 7. Upper and lower Hashin–Shtrikman (HS) bounds of P- (a) and S-wave (b) velocities and P-wave impedance (c) as 
a function of effective pressure. The black circles represent the arithmetic averages, and the red dashed lines represent the 

corresponding fi tting curves with Equations (8)–(10).
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Comparing Figure 6c and Figure 6b shows that the 
eff ect on resistivity by permeability is more pronounced 
in contrast to that by porosity, where a sharp decrease 
in permeability typically accompanies an increase in 
resistivity.

Impedance–permeability and 
resistivity–permeability relations on 

logging and seismic scales

Following the work of Al-Dughaimi et al. (2021), 
this study establishes impedance–permeability and 
resistivity–permeability relationships on logging and 
seismic scales based on the aforementioned experimental 
data. The eff ective elastic moduli of the samples under 
different effective pressures are determined by using 
the Hashin–Shtrikman (HS) equation (Hashin and 
Shtrikman, 1963). It is assumed that the composite 
material is composed of 21 elements with the identical 

volume fraction, where the bulk and shear moduli of 
each element correspond to the elastic moduli of each 
of the 21 samples at stress state. The equations for these 
bounds are

1

HS
i=1

4
4 3
3

N
i

i

fK G
K G

,               (7a)

 1

HS
i=1

N
i

i

f
G Z

K Z
,                 (7b)

9 8
6 2
G K GZ

K G  
,                      (7c)

where KHS± (GHS±) represents the upper and lower bounds 
of the bulk (shear) modulus, and K+ (G+) and K− (G−) 
denote the maximum and minimum bulk (shear) moduli, 
respectively. fi is the volume fraction of the i-th elastic 
element, which is 1/21, and N = 21 is the number of 
samples. Figure 7 depicts the calculated P- and S-wave 

4.8

4.4

4.0

V P (k
m/

s)

(a)

12

11

10

I P (k
m/

s ·
 g/

cc
)

(c)
3.1

3.0

2.9

2.8

2.7

2.6

V S (k
m/

s)

(b)

Upper bounds
Arithmetic average
Fitting result
Lower bounds

0 10 20
Effective pressure (MPa)

30 40 50 0 10 20
Effective pressure (MPa)

30 40 50 0 10 20
Effective pressure (MPa)

30 40 50



10

Permeability Estimation of Shale Oil Reservoir with Laboratory-derived Data: A Case Study of the Chang 7 
Member in Ordos Basin

velocities, the P-wave impedance, and their upper and 
lower bounds with the HS equations. Results reveal 
small variation between these upper and lower HS 
bounds. Then, the arithmetic average of these bounds 
can be employed to represent the eff ective velocity and 
impedance at each pressure point. Based on the fitting 
equation form established by Al-Dughaimi (2021) for 
the 18 tight gas sandstone samples and the calculated 
results of Equation (7), the fi tting relations between VPEff ,  
VSEff , IPEff   and eff ective pressure are

1
6

PEff 4.027+0.4393V = P ,                     (8)
1
6

SEff 2.6+0.2325V = P ,                       (9)

1
6

PEff 9.859+1.226I = P ,                    (10)

where the dimension of velocity (VPEff  and VSEff ) is km/
s, and the dimension of P-wave impedance (IPEff ) is km/
s·cm3. The fi tting results are given as the red curves in 
Figure 7, and the fi tting coeffi  cients R2 are 0.9355 (VPEff ), 
0.9451 (VSEff ), and 0.937 (IPEff ).

Furthermore, the HS equation is employed to simulate 
the upper and lower bounds of resistivity under each 
eff ective pressure:

1

HS 2
2
i

i

f
R R

R R
,                 (11)

where RHS± represents the upper and lower bounds of 
resistivity, R+ and R− denote the maximum and minimum 
resistivity, respectively. Ri is the resistivity at the i-th 
effective pressure. The simulated results are displayed 
in Figure 8a. The arithmetic average of upper and lower 
bounds is used to represent the effective resistivity at 
each pressure, and the fi tting relation between resistivity 
and eff ective pressure is as follows (red dashed curves in 

Figure 8a).
1
6

Eff 24.89+41.47R = P ,                   (12)

where the dimension of resistivity REff  is Ω·m.
Finally, according to Dvorkin (2009), the upper and 

lower bounds of sample permeability are calculated by 
using the arithmetic (κ ) and harmonic

11 averages, 
and the simulated results are presented in Figure 8b. 
The arithmetic averages of upper and lower bounds are 
considered as the eff ective permeabilities, and the fi tting 
relation between the permeability and eff ective pressure 
is (red dashed curves in Figure 8b)

10log 1.088 2.37
45
P .                (13)

Substituting Equations (10) and (12) into Equation 
(13), we can derive an approximate empirical relation 
between the effective permeability and P-wave 
impedance/resistivity.

3
10 Plog 0.088( 9.859) 2.37I  ,          (14)  

3
10log 0.00000227( 24.89) 2.37R .    (15)

Permeability prediction of tight 
sandstone based on multiscale data

1. Permeability prediction of tight sandstone at 
logging scale

We perform permeability predictions from the logging 
data based on the established relations of IP – κ  and        

Figure 8. Upper and lower bounds of resistivity (a) and permeability (b) as a function of effective pressure; the red dashed 
curves are the fi tting results of Equations (12) or (13).
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Figure 9. Comparison of predicted and interpreted permeabilities of well 1:
(a) porosity; (b) density; (c) P-wave velocity; (d) S-wave velocity; (e) resistivity; (f) permeability.

Figure 10. Comparison of predicted and interpreted permeabilities of well 2.
(a) porosity; (b) density; (c) P-wave velocity; (d) S-wave velocity; (e) resistivity; (f) permeability.

R – κ  at the logging scale. Given that the experimental 
samples are predominantly sourced from the fi ve wells 
in the Ordos Basin Q area, the predicted permeabilities 
from the relations of these five wells are individually 
presented in Figures 9–13, and compared with the 
permeability values interpreted of the original logging 
data. This section adopts the maximum value of each 
data set as a reference, normalizes the data, and takes the 
logarithm simultaneously to compare the variation trends 
of the measured and predicted values. The compared 

results of each well are displayed in Figures 9f–13f. The 
blue curve represents the permeability interpreted of 
the logging data, the red curve represents the predicted 
permeability by using the established IP – κ  relationship, 
and the brown curve corresponds to the predicted result 
with the established R – κ  relationship. The comparison 
reveals that the predicted permeability curves from the 
IP – κ  relationship have a similar trend to the interpreted 
data, demonstrating a good overall correlation. 
This result indicates that the established empirical 
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relationship can reasonably describe the permeability 
variation characteristics of Chang 71–72 layers. A 
further comparison between the predicted results of the 
five wells indicates that the accuracy of permeability 
prediction is higher for sandstone intervals with higher 
porosity. Among them, well 3 exhibits a generally high 
porosity, with the entire interval mostly exceeding 8%. 
Therefore, it exhibits the best overall fi ttings, validating 
the validity of IP – κ . Regarding the R – κ  relationship, 
the predicted results also exhibit a similar trend to the 

interpreted data, while there are opposing trends in some 
depth ranges of well 1 (1957–1959 m), well 2 (2221–
2230 m), well 3 (2127–2138 m) and well 5 (1923–1926 
m, 1949–1955 m). This feature indicates that the 
prediction from the R – κ  relationship is worse than that 
with the former relationship. 

Figure 14 reports the error analysis results of the 
predicted and interpreted permeabilities. The blue line 
represents the error bar between the two data sets. The 
error between the two data sets is small, and the overall 

Figure 11. Comparison of predicted and interpreted permeabilities of well 3.
(a) porosity; (b) density; (c) P-wave velocity; (d) S-wave velocity; (e) resistivity; (f) permeability.

Figure 12. Comparison of predicted and interpreted permeabilities of well 4.
(a) porosity; (b) density; (c) P-wave velocity; (d) S-wave velocity; (e) resistivity; (f) permeability.
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Figure 13. Comparison of predicted and interpreted permeabilities of well 5.
(a) porosity; (b) density; (c) P-wave velocity; (d) S-wave velocity; (e) resistivity; (f) permeability.

Figure 14. Error analysis results of predicted and interpreted permeabilities.
(a) well 1; (b) well 2; (c) well 3; (d) well 4; (e) well 5.

error is distributed around 0. Combined with the overall 
variation trends in Figures 9–13, this result indicates 
that the established IP – κ relationship can be used to 

eff ectively predict permeability at the logging scale. The 
established relationships in this study can be applied to 
tight sandstones at various depths.
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2. Permeability prediction based on seismic 
data

Permeability prediction at the seismic scale is 

performed by using the established IP – κ relationship. 
In this section, we predict permeability of a 2D seismic 
profile crossing wells 4, 6, and 7. By utilizing the 
P-wave impedance inverted from the original 2D seismic 
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data, permeability is calculated with the established 
relationship.

Figure 15a illustrates IP  obtained from the seismic 
data. From top to bottom, the target layer is divided 
into the Chang 71 and 72 Layers. IP of the three wells 
across the entire reservoir sections primarily lies within 
9–13 km/s·cm3. Wells 4 and 6 exhibit lower impedance, 
whereas well 7 has a higher impedance. Additionally, the 
overall P-wave impedance of Chang 71 layer is relatively 
high.

The predicted permeability profile is given in 
Figure 15b. The permeability within the target layer 
predominantly ranges from 0.0001 mD to 0.008 mD. 
Chang 71 of wells 4 and 6 shows higher permeability, 
around 0.007 mD, whereas well 7 exhibits a lower value. 
Chang 72 of well 4 has the highest permeability. It is 

apparent that well 7, having a higher P-wave impedance, 
corresponds to lower permeability in the target layer. 
In contrast, well 4 with a low P-wave impedance is 
associated with higher permeability. Figure 16 presents 
the seismic prediction profile around well 4. Results 
show that well 4 has a good oil reserve capacity. 
According to the actual conditions of the working area, 
it is evident that the Chang 71 and 72 layers primarily 
comprise sandstone, with Chang 72 containing the 
primary oil reservoirs due to its high porosity and 
abundant reservoir spaces. The actual production 
data indicates that well 4 has yielded a cumulative oil 
production of 528.7 t, whereas wells 6 and 7 in the target 
zone show no industrial production yet. The predicted 
results agree with the actual situation.

Figure 15. 2D seismic profi les crossing wells 4, 6, and 7: (a) P-wave impedance; (b) permeability prediction profi le.

Figure 16. 2D seismic profi le around well 4: (a) P-wave impedance; (b) permeability prediction profi le.
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Conclusions

Based on the experimental data of the 21 tight 
sandstones collected from the Ordos Basin, we analyze 
the variation of permeability versus porosity, acoustic 

impedance and resistivity, and establish the IP – κ  and     
R – κ  relationships at the ultrasonic scale. These relations 
are extended by combining the effective medium 
model and measurements for the logging and seismic 
scales. Comparing with the interpreted permeability 
of the original logging data demonstrates the effective 
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performance of the IP – κ  relationship in contrast to 
the R – κ  relationship. Comparative analysis based 
on the seismic data further validates the effectiveness 
of the former relationship. Increasing the number of 
experimental samples and incorporating the impacts 
of frequency on the wave impedance can help improve 
the applicability and accuracy of this relationship. 
Alternatively, using NN methods for a further data 
training can be explored. The impedance–permeability 
relationship established in this study can be applied to 
predict the permeability of the target layers, providing a 
technical approach for assessing shale oil reservoir sweet 
spots.

Acknowledgments

The authors acknowledge the supports from the 
National Natural Science Foundation of China 
(42104110, 41974123, 42174161, and 12334019), 
the Natural Science Foundation of Jiangsu Province 
(BK20210379, BK20200021),  the Postdoctoral 
Science Foundation of China (2022M720989), and the 
Fundamental Research Funds for the Central Universities 
(B210201032).

Reference

Al-Dughaimi, S., Muqtadir, A., Alzaki, T., et al., 2021, 
Stress dependence of elastic and transport properties 
in tight gas sandstones: Journal of Petroleum Science 
and Engineering, 196, 108001.

Benson, P., Schubnel, A., Vinciguerra, S., et al., 2006, 
Modeling the permeability evolution of microcracked 
rocks from elastic wave velocity inversion at elevated 
isostatic pressure: Journal of Geophysical Research, 
111 (b4).

Cai, G., Gu, Y., Jiang, Y., et al., 2023, Pore Structure and 
Fluid Evaluation of Deep Organic-Rich Marine Shale: 
A Case Study from Wufeng–Longmaxi Formation of 
Southern Sichuan Basin: Applied Sciences, 13, 7827.

Coates, G. R., and Dumanoir, J. L., 1974, A New 
Approach To Improved Log-Derived Permeability: 
Log Analyst, 15(1), 17–31.

Deng, J.  X.,  Wang, H.,  Zhou, H.,  et  al . ,  2015, 
Microtexture, seismic rock physical properties and 
modeling of Longmaxi Formation shale: Chinese 
Journal of Geophysics, 58(06), 2123–2136.

Guo, Z. Q., Li, X. Y., Liu, C., et al, 2013, A shale rock 
physics model for analysis of brittleness index, 
mineralogy and porosity in the Barnett Shale: Journal 
of Geophysics and Engineering, 10(1): 1–10.

Hosseiny, E., and Mohseni, A., 2023, Garau Formation 
as an unconventional hydrocarbon resource in 
southwestern Iran: a geochemical investigation: 
Journal of Petroleum Exploration and Production 
Technology, 13, 1535–1549.

Helle, H, B., Bhatt, A., and Ursin, B., 2001, Porosity 
and permeability prediction from wireline logs using 
artificial neural networks: a north sea case study: 
Geophysical Prospecting, 49(4), 431–444.

Jia, C. Z., Zheng, M., Zhang, Y. F., 2013, Unconventional 
hydrocarbon resources in China and the prospect of 
exploration and development: Petroleum Exploration 
and Development, 39(02), 129–136.

Klinkenberg, L. J., 1941, The permeability of porous 
media to liquids and gases: Drilling and Production 
Practice, 200–213.

Khalifah, H. A., Glover, P. W. J., and Lorinczi, P., 2019, 
Permeability Prediction and Diagenesis in Tight 
Carbonates Using Machine Learning Techniques: 
Marine and Petroleum Geology, 112, 104096.

Katayama, I., Abe, N., Hatakeyama, K., et al., 2020, 
Permeability Profiles Across the Crust‐Mantle 
Sections in the Oman Drilling Project Inferred From 
Dry and Wet Resistivity Data:  Journal of Geophysical 
Research: Solid Earth, 125.

Khandelwal, M., and Ranjith, P.G., 2010, Correlating 
index properties of rocks with P-wave measurements: 
Journal of Applied Geophysics, 71, 1–5.

Lai, J., Wang, G., Fan, Q. et al. Geophysical Well-Log 
Evaluation in the Era of Unconventional Hydrocarbon 
Resources: A Review on Current Status and Prospects: 
Surveys in Geophysics, 43, 913–957 

Liu, Q., Li, P., Jin, Z. et al., 2022, Organic-rich formation 
and hydrocarbon enrichment of lacustrine shale strata: 
A case study of Chang 7 Member: Science China 
Earth Sciences, 65(1), 118–138.

Lu, M., Han, T., Wang, P., et al, 2023, Permeability 
of artificial sandstones identified by their dual-pore 
structure: Geophysical Journal International, 234, 
1422–1429.

Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock 
physics handbook: tools for seismic analysis of porous 
media, Cambridge University Press.

Mulashani, A. K., Shen, C., Nkurlu, B. M., et al, 2022, 
Enhanced group method of data handling (gmdh) 
for permeability prediction based on the modified 
levenberg marquardt technique from well log data: 



16

Permeability Estimation of Shale Oil Reservoir with Laboratory-derived Data: A Case Study of the Chang 7 
Member in Ordos Basin

Energy, 239, 121915.
Mavko, G. , and Nur, A., 1997, The effect of a 

percolation threshold in the kozeny-carman relation:   
Geophysics, 62(5), 1480–1482.

Ngo, V. T., Lu, V. D., and Le, V. M., 2018, A comparison 
of permeability prediction methods using core 
analysis data for sandstone and carbonate reservoirs: 
Geomechanics & Geophysics for Geo Energy & Geo 
Resources, 4, 129–139.

Prasad, M., 2003, Velocity-permeability relations within 
hydraulic units: Geophysics, 68, 108–117.

Roberto, M., Dario, G., Luiz, E. S. V., et al., 2023, 
Iterative geostatistical seismic inversion with rock-
physics constraints for permeability prediction: 
Geophysics, 88(2), M105–M117.

Rezaee, M., Kadkhodaie-Ilkhchi, A., and Alizadeh, 
P.M., 2008, Intelligent approaches for the synthesis 
of petrophysical logs: Journal of Geophysics and 
Engineering, 5, 12–26.

Shi, J., Zou, Y., Cai, Y., et al., 2021, Organic matter 
enrichment of the Chang 7 member in the Ordos 
Basin: Insights from chemometrics and element 
geochemistry: Marine and Petroleum Geology, 135, 
105404.

Slagle, A. L., and Goldberg, D. S., 2011, Evaluation of 
ocean crustal Sites 1256 and 504 for long‐term CO2 
sequestration. Geophysical research letters, 38(16).

Timur, A., 1968, An investigation of permeability, 
porosity, and residual water saturation relationship for 
sandstone reservoirs: The Log Analyst, 9, 8–17.

Tomski, J. R., Sen, M. K., Hess, T. E., et al., 2022, 
Unconventional reservoir characterization by seismic 
inversion and machine learning of the Bakken 
Formation: AAPG Bulletin, 106(11), 2203–2223.

Walls, J., 1982, Effects of Pore Pressure, Confining 
Pressure, and Partial Saturation on Permeability of 
Sandstones, Ph.D. Thesis, Stanford University.

Walsh, J. B., 1965, The effect of cracks on the 
compressibility of rock: Journal of Geophysical 
Research, 70(2), 381–389.

Watanabe, T., Makimura, M., Kaiwa, Y., et al, 2019, 
Elastic wave velocity and electrical conductivity in 
a brine-saturated rock and microstructure of pores: 
Earth Planets Space, 71(1), 129.

Yang, H., Li, S. Y., Liu, X. Y., 2013, Characteristics and 
resource prospects of tight oil and shale oil in Ordos 
Basin: Acta Petrolei Sinica, 34(01), 1–11.

Yasin, Q., Du, Q., Ismail, A., et al, 2019, A new 
integrated workflow for improving permeability 

estimation in a highly heterogeneous reservoir of 
Sawan Gas Field from well logs data: Geomechanics 
and Geophysics for Geo-Energy and Geo-Resources, 5, 
121–142.

Yang, Z., and Dong M., 2017, A new measurement 
method for radial permeability and porosity of shale: 
Petroleum Research, 2(2), 178–185.

Yale, D., 1984, Network Modeling of Flow, Storage, and 
Deformation in Porous Rocks, Ph.D. Thesis, Stanford 
University.

Zhao, X. B., Chen, X. J., Huang, Q., et al, 2022, 
Logging-data-driven permeability prediction in low-
permeable sandstones based on machine learning with 
pattern visualization: A case study in Wenchang A 
Sag, Pearl River Mouth Basin: Journal of Petroleum 
Science and Engineering, 214, 110517.

Zhang, M., Dai, S., Pan, S., et al., 2023, Deciphering 
the laminated botryococcus-dominated shales in 
saline lacustrine basin, Western Qaidam Basin, NW 
China: Implications for shale oil potential: Marine and 
Petroleum Geology, 155, 106397.

Zhao, W., Bian, C., and Li, Y., 2023, Enrichment factors 
of movable hydrocarbons in lacustrine shale oil and 
exploration potential of shale oil in Gulong Sag, 
Songliao Basin, NE China: Petroleum Exploration and 
Development, 50(3), 520–533.

Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, 
Prediction for in-situ formation stress of shale based 
on rock physics equivalent model: Chinese Journal of 
Geophysics, 58(06), 2112–2122.

Zhang, L., Ba, J., Li, C., et al, 2022, Joint inversion of 
the unifi ed pore geometry of tight sandstones based on 
elastic and electrical properties: Journal of Petroleum 
Science and Engineering, 219, 111109.

Zhang, H., Zhao, B., Dong, S., et al., 2022, A Method 
for the Inversion of Reservoir Eff ective Permeability 
Based on Time-Lapse Resistivity Logging Data and 
Its Application: Geofl uids, 1–13.

Zhang Lin received his Ph.D. degree in Exploration 
Geophysics from Hohai University 
in 2020, and is working as a lecturer 
in the School of Earth Sciences and 
Engineering, Hohai University, since 
2020. His research interests are the 
elastic wave propagation theories of 
porous media and pore microstructure 

characterization.


