Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs

New Theories, Methods, and Applications

Jing Ba

Department of Earth and Atmospheric Sciences University of Houston, Houston, Texas, US

Qizhen Du

School of Geosciences, China University of Petroleum (East China), Qingdao, China

José M. Carcione

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy

Houzhu (James) Zhang

Geophysical Technology Department, ConocoPhillips, Houston, Texas, US

Tobias M. Müller Energy Flagship, CSIRO, Perth, Australia

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-420151-4

For information on all Elsevier publications visit our website at http://store.elsevier.com/

Typeset by Thomson Digital

Printed and bound in USA

Contents

List of	Contributors
---------	--------------

1. Introduction

Jing Ba, Qizhen Du, José M. Carcione, Houzhu (James) Zhang, Tobias M. Müller

1.1	Challe	nges in Hydrocarbon Seismic Exploration	2
	1.1.1	Seismic Attenuation	2
	1.1.2	Seismic Anisotropy	2
	1.1.3	Reverse-Time Migration and Wavefield-Propagation	
		Operators	3
	1.1.4	Rock-Physics Modeling and Quantitative Seismic	
		Interpretation	3
1.2	Main	Contents of the Book	4
	1.2.1	Wave-Propagation Theories and Experiments	4
	1.2.2	Seismic Modeling in Anisotropic Rocks	4
	1.2.3	Developments in Reverse-Time Migration and Wave	
		Operator	5
	1.2.4	Quantitative Hydrocarbon Seismic Detection	5
Refe	erences		6

2. Wave Propagation and Attenuation in Heterogeneous Reservoir Rocks

Jing Ba, Zhenyu Yuan, José M. Carcione, Yuqian Guo, Lin Zhang, Weitao Sun

2.1	Introd	uction	9	
2.2	Biot-F	Rayleigh Theory of Wave Propagation in Heterogeneous		
	Porou	s Media	10	
2.3	Biot-F	Rayleigh Theory of Wave Propagation in Patchy-saturated		
	Reserv	/oir Rocks	21	
2.4	Wave Propagation in Partially Saturated Rocks: Numerical			
	Examp	bles	26	
	2.4.1	Influence of Fluid Composition	26	
	2.4.2	Influence of Fluid Mobility	28	
	2.4.3	Influence of the Fluid Compressibility Ratio	31	
	2.4.4	Influence of Rock Porosity	31	
	2.4.5	Influence of Saturation Degree	32	

xi

2.5	Effect of Inclusion Pore-fluid: Reformulated Biot-Rayleigh Theory	33
2.6	Fluid Substitution in Partially Saturated Sandstones	37
Ack	nowledgments	42
Refe	erences	42

3. Acoustics of Partially Saturated Rocks: Theory and Experiments

Tobias M. Müller, Eva Caspari, Qiaomu Qi, J. Germán Rubino, Danilo Velis, Sofia Lopes, Maxim Lebedev, Boris Gurevich

3.1	Introduction	45
3.2	Fluid Pressure Diffusion and Patchy Saturation Bounds	47
3.3	Biot's Theory of Poroelasticity and Random Patchy	
	Saturation Models	50
3.4	Laboratory Experiments	54
3.5	Laboratory Data Modeling	58
3.6	Patchy Saturation and Two-Phase Flow Concepts	62
3.7	Field-Scale Observations	63
3.8	Signatures of Patchy Saturation in the Seismic	
	Frequency Band	67
3.9	Perspectives for Future Research	72
Ackr	nowledgments	72
Refe	rences	73

4. Fine Layering and Fractures: Effective Seismic Anisotropy

José M. Carcione

4.1	Introd	Introduction 77			
4.2	Theor	84			
	4.2.1	Stress-Strain Relation	84		
	4.2.2	Correspondence Principle	85		
	4.2.3	Snell's Law	85		
	4.2.4	Wave Equation and Dispersion Equation	87		
	4.2.5	Wave Velocities and Loss Factors	88		
4.3	Fine L	ayering	95		
	4.3.1	Backus Averaging	95		
	4.3.2	Schoenberg–Muir Averaging	104		
	4.3.3	Backus Averaging in Porous Media	110		
	4.3.4	Gassmann Model	119		
4.4	Fractu	ires	121		
	4.4.1	Scattering at a Single Fracture	121		
	4.4.2	Multiple Dense Fractures	130		
4.5	Nume	erical Harmonic Experiments	145		
	4.5.1	Solid Medium	145		
	4.5.2	Porous Medium	148		
Refe	erences	rences 151			

5. Characteristics of Seismic Wave Propagation in Viscoelastic Anisotropic Fractured Reservoirs

Xianzheng Zhao, Xuming Bai, Qizhen Du

5.1	Introduction 1			
5.2	2 Effective Medium Model of Viscoelastic Anisotropic			
	Fractu	red Reservoirs	160	
	5.2.1	Characterization of Rock Mineral Viscoelasticity	160	
	5.2.2	Characterization of Fracture-Induced Anisotropy	163	
	5.2.3	Characterization of the Elasticity Coefficients		
		in a Viscoelastic Medium With Vertical Fractures	163	
	5.2.4	Characterization of the Elasticity Coefficients of a		
		Viscoelastic Medium With Tilted Fractures	167	
5.3	Nume	rical Simulation of Wavefield in Viscoelastic		
	Anisot	ropic Fractured Medium	168	
	5.3.1	Derivation of Viscoelastic Anisotropic Velocity-Stress		
		Equations	168	
	5.3.2	3D RSG Finite-Difference Algorithm	172	
5.4	Analys	sis of Wave Propagation Characteristics in Viscoelastic		
	Anisot	tropic Fractured Medium	186	
	5.4.1	Effects of Q-Value Variations of Solid	187	
	5.4.2	Effects of Reservoir Fluid Changes	190	
	5.4.3	Effects of Variation in Fracture Bulk Density	193	
	5.4.4	Effects of Variation of Fracture Dip	195	
	5.4.5	Effects of Variation in Fracture Azimuth	198	
5.5	Concl	usions	201	
Refe	erences		202	

6. Reverse-Time Migration: Principles, Practical Issues, and Recent Developments

Houzhu (James) Zhang

6.1	Introduction to Seismic Imaging and Reverse-Time Migration			
	6.1.1	Seismic Imaging	206	
	6.1.2	Overview of Reverse-Time Migration	207	
6.2	Theor	y and General Procedures of Reverse-Time Migration	207	
	6.2.1	Basic Wave Equations for Reverse-Time Migration		
		in Isotropic Media	208	
	6.2.2	Fundamental Imaging Condition	208	
6.3	Revers	se-Time Migration in Anisotropic Media	209	
	6.3.1	Seismic Properties and Parameterization in VTI		
		and TTI Media	209	
	6.3.2	Wave Propagation and Reverse-Time Migration in		
		VTI and TTI Media	213	
	6.3.3	Seismic Properties, Wave Propagation, and		
		Reverse-Time Migration in Orthorhombic Media	215	

6.4	Gather Representations of Images		
	6.4.1	Space, Time-Shift Gathers, and Angle Domain	
		Conversion	224
	6.4.2	Reverse-Time Migration 3D-Angle Gathers	227
6.5	Practi	cal Issues in Reverse-Time Migration	230
	6.5.1	Low-Frequency Noise in Reverse-Time Migration	
		Image and Impedance Sensitivity Kernel	230
	6.5.2	Physical Constraints for Anisotropic Parameters	232
	6.5.3	Artificial and Physical Noises of Reverse-Time	
		Migration in Anisotropic Media	235
	6.5.4	Illumination Issues in Complicated Areas	239
6.6	Impac	ts of Long Offsets and Full Azimuths on Reverse-Time	
	Migra	tion	245
6.7	Summ	nary and Conclusions	247
Refe	References 2		

7. Wave-Propagation Operators for True-Amplitude Reverse-Time Migration

Qizhen Du, Gang Fang, Xufei Gong, Mingqiang Zhang

7.1	Introduction		
7.2	Theory		
	7.2.1	Wave-Propagation Operators in Reverse-Time Migration	260
	7.2.2	True-Amplitude Migration Formula	262
	7.2.3	Wave-Propagation Operators for Reverse-Time Migration	263
	7.2.4	Compensation of Transmission Losses for the	
		True-Amplitude Reverse-Time Migration	271
7.3	Nume	rical Examples	274
	7.3.1	Applying Numerical Verification of Eq. (7.20) to	
		Two-Way Wave Propagation Operator	275
	7.3.2	2D Horizontal Reflector Model	276
	7.3.3	Marmousi2 Model	278
7.4	Concl	usions	283
References			285

Rock Physics Models and Quantitative Seismic Prediction of Heterogeneous Gas Reservoirs – A Case Study in Metejan Area of Amu Darya Basin

Jing Ba, Hao Yu, Jinsong Li, Xinfei Yan, Xingyang Zhang, Xinzhen He

Overv	iew on the Work Area	292
8.1.1	Amu Darya Basin	292
8.1.2	Overview on Metejan District	294
Experimental Analysis		299
8.2.1	CT Scanning Analysis	299
8.2.2	Geological Thin Section Analysis for Rocks	301
8.2.3	Rock Physics Experimental Measurement	305
	Overv 8.1.1 8.1.2 Experi 8.2.1 8.2.2 8.2.3	Overview on the Work Area8.1.1Amu Darya Basin8.1.2Overview on Metejan DistrictExperimental Analysis8.2.1CT Scanning Analysis8.2.2Geological Thin Section Analysis for Rocks8.2.3Rock Physics Experimental Measurement

8.3	Multis	cale Rock Physical Modeling	308
	8.3.1	Basic Theories	308
	8.3.2	Rock Physical Modeling and Workflow	313
	8.3.3	Multiscale Rock Physics Template and Its Calibration	317
	8.3.4	Porosity and Gas Saturation Prediction	324
8.4	Rock I	Physics Modeling in Heterogenenous Carbonate	
	Reserv	voirs	325
	8.4.1	Effect of Pore Shapes on Seismic Wave Velocity	325
	8.4.2	Rock Physics Inversion Based on Pore Shape Analysis	328
8.5	Concl	usions	332
Refe	erences		335
Subject In	dex		339
Author Inc	dex		357