Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs
New Theories, Methods, and Applications

Jing Ba
Department of Earth and Atmospheric Sciences
University of Houston, Houston, Texas, US

Qizhen Du
School of Geosciences, China University of Petroleum (East China), Qingdao, China

José M. Carcione
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy

Houzhu (James) Zhang
Geophysical Technology Department, ConocoPhillips, Houston, Texas, US

Tobias M. Müller
Energy Flagship, CSIRO, Perth, Australia
Contents

List of Contributors xi

1. Introduction
Jing Ba, Qizhen Du, José M. Carcione, Houzhu (James) Zhang, Tobias M. Müller

1.1 Challenges in Hydrocarbon Seismic Exploration 2
1.1.1 Seismic Attenuation 2
1.1.2 Seismic Anisotropy 2
1.1.3 Reverse-Time Migration and Wavefield-Propagation Operators 3
1.1.4 Rock-Physics Modeling and Quantitative Seismic Interpretation 3

1.2 Main Contents of the Book 4
1.2.1 Wave-Propagation Theories and Experiments 4
1.2.2 Seismic Modeling in Anisotropic Rocks 4
1.2.3 Developments in Reverse-Time Migration and Wave Operator 5
1.2.4 Quantitative Hydrocarbon Seismic Detection 5

References 6

2. Wave Propagation and Attenuation in Heterogeneous Reservoir Rocks
Jing Ba, Zhenyu Yuan, José M. Carcione, Yuqian Guo, Lin Zhang, Weitao Sun

2.1 Introduction 9
2.2 Biot–Rayleigh Theory of Wave Propagation in Heterogeneous Porous Media 10
2.3 Biot–Rayleigh Theory of Wave Propagation in Patchy-saturated Reservoir Rocks 21
2.4 Wave Propagation in Partially Saturated Rocks: Numerical Examples 26
2.4.1 Influence of Fluid Composition 26
2.4.2 Influence of Fluid Mobility 28
2.4.3 Influence of the Fluid Compressibility Ratio 31
2.4.4 Influence of Rock Porosity 31
2.4.5 Influence of Saturation Degree 32
2.5 Effect of Inclusion Pore-fluid: Reformulated Biot–Rayleigh Theory 33
2.6 Fluid Substitution in Partially Saturated Sandstones 37
Acknowledgments 42
References 42

3. Acoustics of Partially Saturated Rocks: Theory and Experiments
Tobias M. Müller, Eva Caspari, Qiaomu Qi, J. Germán Rubino, Danilo Velis, Sofia Lopes, Maxim Lebedev, Boris Gurevich
3.1 Introduction 45
3.2 Fluid Pressure Diffusion and Patchy Saturation Bounds 47
3.3 Biot’s Theory of Poroelasticity and Random Patchy Saturation Models 50
3.4 Laboratory Experiments 54
3.5 Laboratory Data Modeling 58
3.6 Patchy Saturation and Two-Phase Flow Concepts 62
3.7 Field-Scale Observations 63
3.8 Signatures of Patchy Saturation in the Seismic Frequency Band 67
3.9 Perspectives for Future Research 72
Acknowledgments 72
References 73

4. Fine Layering and Fractures: Effective Seismic Anisotropy
José M. Carcione
4.1 Introduction 77
4.2 Theory of Wave Propagation 84
 4.2.1 Stress–Strain Relation 84
 4.2.2 Correspondence Principle 85
 4.2.3 Snell’s Law 85
 4.2.4 Wave Equation and Dispersion Equation 87
 4.2.5 Wave Velocities and Loss Factors 88
4.3 Fine Layering 95
 4.3.1 Backus Averaging 95
 4.3.2 Schoenberg–Muir Averaging 104
 4.3.3 Backus Averaging in Porous Media 110
 4.3.4 Gassmann Model 119
4.4 Fractures 121
 4.4.1 Scattering at a Single Fracture 121
 4.4.2 Multiple Dense Fractures 130
4.5 Numerical Harmonic Experiments 145
 4.5.1 Solid Medium 145
 4.5.2 Porous Medium 148
References 151
5. Characteristics of Seismic Wave Propagation in Viscoelastic Anisotropic Fractured Reservoirs
Xianzheng Zhao, Xuming Bai, Qizhen Du

5.1 Introduction 158
5.2 Effective Medium Model of Viscoelastic Anisotropic Fractured Reservoirs 160
5.2.1 Characterization of Rock Mineral Viscoelasticity 160
5.2.2 Characterization of Fracture-Induced Anisotropy 163
5.2.3 Characterization of the Elasticity Coefficients in a Viscoelastic Medium With Vertical Fractures 163
5.2.4 Characterization of the Elasticity Coefficients of a Viscoelastic Medium With Tilted Fractures 167
5.3 Numerical Simulation of Wavefield in Viscoelastic Anisotropic Fractured Medium 168
5.3.1 Derivation of Viscoelastic Anisotropic Velocity–Stress Equations 168
5.3.2 3D RSG Finite-Difference Algorithm 172
5.4 Analysis of Wave Propagation Characteristics in Viscoelastic Anisotropic Fractured Medium 186
5.4.1 Effects of Q-Value Variations of Solid 187
5.4.2 Effects of Reservoir Fluid Changes 190
5.4.3 Effects of Variation in Fracture Bulk Density 193
5.4.4 Effects of Variation of Fracture Dip 195
5.4.5 Effects of Variation in Fracture Azimuth 198
5.5 Conclusions 201
References 202

6. Reverse-Time Migration: Principles, Practical Issues, and Recent Developments
Houzhu (James) Zhang

6.1 Introduction to Seismic Imaging and Reverse-Time Migration 206
6.1.1 Seismic Imaging 206
6.1.2 Overview of Reverse-Time Migration 207
6.2 Theory and General Procedures of Reverse-Time Migration 207
6.2.1 Basic Wave Equations for Reverse-Time Migration in Isotropic Media 208
6.2.2 Fundamental Imaging Condition 208
6.3 Reverse-Time Migration in Anisotropic Media 209
6.3.1 Seismic Properties and Parameterization in VTI and TTI Media 209
6.3.2 Wave Propagation and Reverse-Time Migration in VTI and TTI Media 213
6.3.3 Seismic Properties, Wave Propagation, and Reverse-Time Migration in Orthorhombic Media 215
6.4 Gather Representations of Images 223
 6.4.1 Space, Time-Shift Gathers, and Angle Domain Conversion 224
 6.4.2 Reverse-Time Migration 3D-Angle Gathers 227
6.5 Practical Issues in Reverse-Time Migration 230
 6.5.1 Low-Frequency Noise in Reverse-Time Migration Image and Impedance Sensitivity Kernel 230
 6.5.2 Physical Constraints for Anisotropic Parameters 232
 6.5.3 Artificial and Physical Noises of Reverse-Time Migration in Anisotropic Media 235
 6.5.4 Illumination Issues in Complicated Areas 239
6.6 Impacts of Long Offsets and Full Azimuths on Reverse-Time Migration 245
6.7 Summary and Conclusions 247
References 249

7. Wave-Propagation Operators for True-Amplitude Reverse-Time Migration
 Qizhen Du, Gang Fang, Xufei Gong, Mingqiang Zhang
7.1 Introduction 253
7.2 Theory 259
 7.2.1 Wave-Propagation Operators in Reverse-Time Migration 260
 7.2.2 True-Amplitude Migration Formula 262
 7.2.3 Wave-Propagation Operators for Reverse-Time Migration 263
 7.2.4 Compensation of Transmission Losses for the True-Amplitude Reverse-Time Migration 271
7.3 Numerical Examples 274
 7.3.1 Applying Numerical Verification of Eq. (7.20) to Two-Way Wave Propagation Operator 275
 7.3.2 2D Horizontal Reflective Model 276
 7.3.3 Marmousi2 Model 278
7.4 Conclusions 283
References 285

8. Rock Physics Models and Quantitative Seismic Prediction of Heterogeneous Gas Reservoirs – A Case Study in Metejan Area of Amu Darya Basin
 Jing Ba, Hao Yu, Jinsong Li, Xinfei Yan, Xingyang Zhang, Xinzhen He
8.1 Overview on the Work Area 292
 8.1.1 Amu Darya Basin 292
 8.1.2 Overview on Metejan District 294
8.2 Experimental Analysis 299
 8.2.1 CT Scanning Analysis 299
 8.2.2 Geological Thin Section Analysis for Rocks 301
 8.2.3 Rock Physics Experimental Measurement 305
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Multiscale Rock Physical Modeling</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>8.3.1 Basic Theories</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>8.3.2 Rock Physical Modeling and Workflow</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>8.3.3 Multiscale Rock Physics Template and Its Calibration</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>8.3.4 Porosity and Gas Saturation Prediction</td>
<td>324</td>
</tr>
<tr>
<td>8.4</td>
<td>Rock Physics Modeling in Heterogeneous Carbonate Reservoirs</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>8.4.1 Effect of Pore Shapes on Seismic Wave Velocity</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>8.4.2 Rock Physics Inversion Based on Pore Shape Analysis</td>
<td>328</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>335</td>
</tr>
</tbody>
</table>

Subject Index 339
Author Index 357