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ABSTRACT

Wave velocity dispersion and attenuation due to wave-in-
duced fluid flow are important properties for seismic explo-
ration studies of fracture characterization and hydrocarbon
identification. Existing seismic inversions are based primarily
on an isotropic theory. However, dispersion and anisotropy
should also be considered together. Based on a fracture model
describing attenuation, we introduce a frequency-dependent
stiffness matrix for azimuthal dispersion analysis, where
the dispersion gradient of fracture weakness is a novel fluid
indicator. Then, a method of inverting the frequency-depen-
dent amplitude changes with angle and azimuth is developed
to extract the fluid indicator from the seismic data. An inver-
sion test on field data demonstrates the validity of our method.

INTRODUCTION

Seismic data are associated with a large amount of information
regarding the tectonics and lithology of the subsurface. When seismic
waves travel through fractured reservoirs, the recorded data may
contain information about rock anisotropy (Crampin, 1984; Hsu
and Schoenberg, 1993; Bakulin et al., 2000a, 2000b; Carcione
and Picotti, 2012; Carcione et al., 2012; Oh and Alkhalifah,
2016). A single set of aligned vertical fractures embedded in an iso-
tropic host rock can be regarded as an effective transversely isotropic
medium with a horizontal axis of symmetry (HTI). As demonstrated
by numerical simulations, laboratory experiments, and seismic inver-
sions, fracture-induced anisotropy causes amplitude variation with
azimuth (AVAZ) (Henneke, 1972; Keith and Crampin, 1977; Rüger,
1998; Chen et al., 2015, 2017, 2018; Pan et al., 2018; Zhang et al.,
2021, 2022). Fractures are channels of accumulation and migration

of fluids; therefore, the characterization of the fractures and the
identification of saturating fluids will contribute to the exploration
and development of fractured reservoirs.
The type of saturating fluids can be estimated from seismic data

considering specific fluid indicators. A variety of indicators have been
proposed, such as combinations of elastic and reservoir properties and
frequency-dependent inversions (Carcione, 2000, 2022; Gurevich,
2003; Chapman et al., 2006; Zhao et al., 2017; Guo et al., 2018a,
2018b). The combination of P- and S-wave velocity ratio, Poisson’s
ratio, and Lamé constants exploits the assumption that S-wave velocity
is affected only by the rock skeleton, whereas P-wave velocity changes
are correlated to type fluid (Goodway, 2001; Zimmer, 2003; Zhao
et al., 2014). In anisotropic media, the ratio of normal to shear fracture
weakness is a fluid indicator (Schoenberg and Sayers, 1995; Pan et al.,
2017). Peng et al. (2013) adopt the anisotropic gradient to identify
fluid content. Russell et al. (2003, 2011) propose a decoupled fluid
indication factor based on the Gassmann equation. Huang et al.
(2021a) propose an improved method for the decoupling of elastic
parameters based on the Hertz-Mindlin model and presented a direct
inversion of fluid properties for sandstones. These methods depend on
specific rock-physics models that must be calibrated to the lithotype of
the reservoir considered in the inversion.
Frequency-dependent seismic anomalies due to the saturating

fluid are described by the wave-induced fluid flow (WIFF) effect,
an attenuation mechanism that implies velocity dispersion (velocity
dependence on frequency, not to be confused with loss of amplitude
due to geometric spreading). The dispersion can be a fluid indicator
and in the case of fractures, the fracture weaknesses are frequency
dependent. A frequency-dependent amplitude-variation-with-offset
(AVO) inversion is proposed by Castagna et al. (2003) as an effec-
tive approach to extract dispersion features. Wilson et al. (2009) and
Wu et al. (2015) propose a frequency-dependent AVO inversion to
extract the P-wave velocity dispersion gradient. Recently, different
methods have been proposed but mainly based on the assumption of
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isotropic media (e.g. Huang et al., 2017, 2021b; Luo et al., 2018).
In addition to the WIFF mechanism, scattering also induces
frequency-dependent variations of the elastic properties (Kumar
et al., 2019). In this work, we assume a homogeneous medium
and neglect scattering effects.
Seismic propagation induces local fluid flow between the soft mi-

crofractures and the host porous skeleton. WIFF effects lead to veloc-
ity dispersion, attenuation, and frequency-dependent anisotropy.
Numerous models, incorporating microfractures and intergranular
pores in the host rock or considering these fractures as host pertur-
bations, have explained WIFF effects in anisotropic media (Hudson
et al., 1996; Chapman et al., 2002; Chapman, 2003; Jakobsen et al.,
2003; Brajanovski et al., 2005; Galvin and Gurevich, 2009; Gurevich
et al., 2009; Ba et al., 2017; Fu et al., 2018, 2020).
Although the previous studies have been performed on nonlinear

fractured rock-physics models to derive the frequency-dependent
stiffness matrices for AVAZ analysis (Guo et al., 2020; Liu
et al., 2021), they do not explicitly quantify the relationships be-
tween frequency-dependent variables and fracture fluid properties.
In addition, the latest inversion approaches basically assume the
Thomsen anisotropy parameters to be frequency dependent without
directly relating them to fracture properties (Li et al., 2024). In this
work, a modified Hudson model (Pointer et al., 2000) combined
with the Schoenberg model is introduced, where fracture parameters
are expressed as frequency-dependent functions. This allows us to
establish the normal fracture weakness parameter as a function di-
rectly related to fracture fluid. Furthermore, we apply a Taylor ex-
pansion to this function, providing a more physically consistent
method than simply assuming frequency-dependent anisotropic
parameters. Then, a frequency-dependent AVAZ inversion is per-
formed to extract the dispersion of fracture weaknesses. Finally,

we demonstrate the performance of the proposed inversion method
on field data examples.

METHODOLOGY

Stiffness matrix of rocks with interconnected aligned
fractures

Table 1 provides the list of symbols. According to Hudson
(1981), the general form of the stiffness matrix C of rocks with
aligned fractures, accurate to the first order, is

C ¼ C0 þ C1; (1)

where C0 is the stiffness matrix of the host matrix, and C1 is the
first-order correction for the effect of the embedded fractures. Let
the x3-axis be perpendicular to the layering, and x1 and x2 are mu-
tually orthogonal axes parallel to the stratum. By assuming that the
normal to the fractures is aligned along a preferred spatial axis, x1,
the associated stiffness matrix is

C¼

2
66666666664

Mb

�
1−Mb

μb
eU33

�
λb
�
1−Mb

μb
eU33

�
λb
�
1−Mb

μb
eU33

�
0 0 0

λb
�
1−Mb

μb
eU33

�
Mb−

λ2b
μb
eU33 λb

�
1−λb

μb
eU33

�
0 0 0

λb
�
1−Mb

μb
eU33

�
λb
�
1−λb

μb
eU33

�
Mb−

λ2b
μb
eU33 0 0 0

0 0 0 μb 0 0

0 0 0 0 μbð1−eU11Þ 0

0 0 0 0 0 μbð1−eU11Þ

3
77777777775
;

(2)

where Mb and μb are the P- and S-wave moduli of the host matrix,
respectively, and λb is the first Lamé constant. The medium of the
host matrix can be assumed isotropic or transverse isotropy media
with a vertical axis of symmetry (VTI). The isotropic host matrix
becomes an HTI medium when adding vertical fractures, whereas a
VTI host becomes an orthorhombic medium. Equation 2 corre-
sponds to the first case. Moreover, e is the fracture density, and
U11 and U33 are fracture parameters related to the host medium
and saturating material, respectively.
Here, to fully incorporate the WIFF effect of fluids within

fractures, an improved Hudson model (Pointer et al., 2000)
coupled with the Schoenberg model is introduced. It yields the
stiffness matrix expression for a fluid-saturated state, and the
detailed derivation can be found in Appendix A. The stiffness
matrix is decomposed into three components: the host matrix
Cb, the crack component Ccrack, and the fluid-related part
Cfluid, as follows:

C ¼ Cb þ Ccrack þ Cfluid; (3)

where

Cb ¼

2
6666664

Mb λb λb 0 0 0

λb Mb λb 0 0 0

λb λb Mb 0 0 0

0 0 0 μb 0 0

0 0 0 0 μb 0

0 0 0 0 0 μb

3
7777775
; (4)

Table 1. List of symbols.

λ; μ Lamé parameters C Stiffness matrix

C0 Stiffness matrix of host C1 First-order correction
of C

K Bulk modulus M P-wave modulus

E Young’s modulus ν Poisson’s ratio
cIJ Stiffness ρ Density

cb;IJ Stiffness of host matrix ρb Density of host matrix

Mb P-wave modulus of
host matrix

λb; μb Lamé parameters of host
matrix

RPP P-P wave reflection
coefficient

Riso
PP Isotropic part of RPP

Rani
PP Anisotropic part

of RPP

q Volume proportion
of fluid

θ Incidence angle ϕ Azimuthal angle

e Fracture density χ Aspect ratio of fracture

Δ Perturbation δN; δT Fracture weaknesses

δN; δT Fracture weaknesses δdryN ; δdryT Dry fracture weaknesses

η Viscosity W Wavelet matrix

S Seismic data S* Azimuthal difference
seismic data

g μb=Mb α P-wave velocity

f Frequency fdom Dominant frequency

MR252 Ba et al.
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Ccrack ¼−

2
6666666664

Mbδ
dry

N
g

λbδ
dry

N
g

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λ2b
μ δ

dry
N

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λbδ
dry

N
g

λ2b
μ δ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 δdryT 0

0 0 0 0 0 δdryT

3
7777777775
; (5)

and

Cfluid ¼ðω2Γ2þ iωΓÞ

2
6666666664

Mbδ
dry

N
g

λbδ
dry

N
g

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λ2b
μ δ

dry
N

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λbδ
dry

N
g

λ2b
μ δ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777777775
; (6)

where ω denotes g ¼ μb=Mb, and δdryN and δdryT are the normal and
tangential weaknesses of the dry fractures, respectively. Here, Γ
represents the relaxation time, which is a function of water sat-
uration. The detailed expression can be found in Appendix A.
In this work, we consider fracture weakness as a frequency-de-

pendent parameter, while a partial decoupling of the fracture weak-
ness is performed. An idealized full decoupling is still not achieved.
In the inversion process, we focus on the dispersion of fracture
weakness, and the inversion based on the fluid factor is not con-
ducted. In a future study, a method of better/full decoupling of
the fracture weakness could be proposed to isolate the parameters
that are exclusively related to fluid, based on which the seismic in-
version could be improved with the accuracy and applicability.
The stiffness matrix of rocks with partially saturated fractures is

frequency dependent, and the ratio of the imaginary and real parts of
matrix varies with frequency, fluid saturation, fracture aspect ratio,
and fracture density.
In the presence of weak anisotropy, the stiffness components cijkl

at a weak-contrast interface can be considered to be perturbed on the
basis of a reference (or background) medium. Thus, the real and
imaginary parts of the perturbation are, respectively,

R½ΔCðωÞ�¼−

2
66666666666664

ð1−ω2Γ2ÞMbδ
dry

N
g ð1−ω2Γ2Þλbδ

dry

N
g ð1−ω2Γ2Þλbδ

dry

N
g 0 0 0

ð1−ω2Γ2Þλbδ
dry

N
g ð1−ω2Γ2Þλ2bμbδ

dry
N ð1−ω2Γ2Þλbδ

dry

N
g 0 0 0

ð1−ω2Γ2Þλbδ
dry
N
g ð1−ω2Γ2Þλbδ

dry
N
g ð1−ω2Γ2Þλ2bμbδ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 δdryT 0

0 0 0 0 0 δdryT

3
77777777777775

;

I½ΔCðωÞ�¼ωΓ

2
666666666666664

Mbδ
dry

N
g

λbδ
dry

N
g

λbδ
dry

N
g 000

λbδ
dry
N
g

λ2b
μb
δN

λbδ
dry
N
g 000

λbδ
dry
N
g

λbδ
dry
N
g

λ2b
μb
δdryN 000

0 0 0 000

0 0 0 000

0 0 0 000

3
777777777777775

: (7)

The azimuthal dependence of the perturbation is induced by the
dry fractures, while the frequency-dependent perturbation is asso-
ciated with fracture fillings. We consider a two-layer model to com-
pare the real and imaginary parts of the frequency-dependent
parameters, where the material properties are reported in Table 2.
The model is composed of isotropic media overlying a fractured
reservoir (with HTI symmetry, horizontal transverse isotropy).
Figure 1a and 1b shows the real (upper panel) and imaginary (lower
panel) parts of U33 and U11 with the properties of the lower layer
(equation A-3). The imaginary part of U33 is much smaller than the
real part at the seismic frequency range, and U11 is not a parameter
that varies with frequency. Thus, for the U33 and U11 parameters, it
is the real part that mainly affects them, while the imaginary part has
very little effect on them. In addition, if we consider the imaginary
part (see next section) it is also difficult to apply the approximate
reflection coefficients. Then, the seismic wavefield simulation veri-
fies that the effect of the imaginary part can be neglected.
To observe the effect of the imaginary part of the stiffness on the

seismic data, we adopt a generalized propagation matrix (GPM)
(Carcione, 2022) as forward operator to simulate angle gathers.
We introduce the complex stiffness and its real part to the GPM
method and obtain the corresponding gathers. Figure 2a and 2b cor-
responds to the angle gathers for zero azimuth by using the GPM
with the complex and real part of the stiffness matrix, respectively,
and Figure 2c shows the difference between the simulated gathers.
The angle gather simulated by neglecting the imaginary part agrees
relatively well with the exact one. Indeed, the imaginary part usu-
ally affects the variation of the phase but when the imaginary part is
much smaller than the real part, such an influence is negligible.

Table 2. Material properties of two-layer model.

Property Value

Upper layer P-wave modulus Mb 20.4 GPa

Shear modulus μb 4.04 GPa

Bulk density ρb 2.43 g=cm3

Fracture density e 0

Aspect ratio χ 0

Volume proportion of gas qg 0.98

Lower layer P-wave modulus Mb 23.3 GPa

Shear modulus μb 6.31 GPa

Bulk density ρb 2.28 g=cm3

Fracture density e 0.01

Aspect ratio χ 0.001

Volume proportion of gas qg 0.7

Fluid Brine P-wave velocity αbrine 1.47 km/s

Brine bulk density ρbrine 1.04 g=cm3

Brine viscosity ηw 1 × 10−3 Pa · s

Oil P-wave velocity αoil 0.750 km/s

Oil bulk density ρoil 0.70 g=cm3

Oil viscosity ηo 20 × 10−3 Pa · s

Gas P-wave velocity αgas 0.603 km/s

Gas bulk density ρgas 0.0011 g=cm3

Gas viscosity ηg 1.8 × 10−5 Pa · s
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Hence, we neglect the imaginary part of the stiffness matrix in the
following analyses.
According to the Schoenberg model (Schoenberg and Protazio,

1992), the stiffness matrix is related to the isotropic host medium
and the anisotropic perturbation as follows:

C¼CbþΔC¼

2
66666666664

Mb λb λb 0 0 0

λb Mb λb 0 0 0

λb λb Mb 0 0 0

0 0 0 μb 0 0

0 0 0 0 μb 0

0 0 0 0 0 μb

3
77777777775

−

2
666666666664

MbδN λbδN λbδN 0 0 0

λbδN
λ2b
Mb

δN
λ2b
Mb

δN 0 0 0

λbδN
λ2b
Mb

δN
λ2b
Mb

δN 0 0 0

0 0 0 0 0 0

0 0 0 0 μbδT 0

0 0 0 0 0 μbδT

3
777777777775

: (8)

By comparing equations 3 and 8, the fracture weaknesses are

δN ¼ 4e
3gð1 − gÞ ð1 − ω2Γ2Þ; δT ¼ 16e

3ð3–2gÞ ; (9)

where δN is a frequency-dependent parameter, and the related
dispersion can be considered as an indicator for the fracture filling
fluid.

FREQUENCY-DEPENDENT AVAZ INVERSION

The P-P wave approximate reflection coefficients (Chen et al.,
2015; Pan et al., 2017) are

RPPðθ;ϕÞ ¼ aMb
ðθÞrMb

þ aμbðθÞrμb þ aρðθÞrρ
þ aδN ðθ;ϕÞrδN þ aδT ðθ;ϕÞrδT ; (10)

where ϕ and θ are the azimuth and incidence angles, and

rMb
¼ ΔMb

Mb
; rμb ¼

Δμb
μb

; rρ ¼
Δρ
ρ

;

rδN ¼ ΔδN; rδT ¼ ΔδT; (11)

where Δ and f·g denote the difference and aver-
age of the parameters between the upper and
lower layers, and

aMb
¼ 1

4cos2 θ
; aμb ¼−2gsin2 θ;

aρ ¼
1

2
−

1

4cos2 θ
;

aδN ¼
1

4cos2 θ
½2gðsin2 θ sin2ϕþ cos2 θÞ−1�2;

aδT ¼ gsin2 θcos2ϕð1− tan2 θ sin2ϕÞ: (12)

As shown in equation 10, the reflection
coefficient can be partitioned into two parts,
i.e., an azimuth-dependent (anisotropic part)
Rani
PP ðθ;ϕÞ and an azimuth-independent (iso-

tropic part) Riso
PPðθÞ.

Azimuthal seismic data can be considered as
the reflectivity profile convolved with the seis-
mic wavelet, such that

Sðθ;ϕÞ ¼ Wðθ;ϕÞRPPðθ;ϕÞ; (13)

whereW and RPP are the wavelet matrix and P-P
wave reflectivity. The wavelets with different in-
cidence and azimuth angles are extracted from
seismic data and well-log data, and then each
frequency component is obtained using time-fre-
quency analysis methods. The specific forms for
SPP, RPP, and W are

Figure 1. Real (top) and imaginary (bottom) parts of (a) U33 and (b) U11 for gas-bearing
fractured rocks as a function of frequency.

Figure 2. Simulated zero-azimuth angle gather of a two-layer model (Table 2) by using the
GPM method with (a) the complex and (b) real part of the stiffness matrix, and (c) the
difference.
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SPPðθ;ϕÞ¼

2
666666666664

sPPð1;θ;ϕÞ
sPPð2;θ;ϕÞ

..

.

sPPði;θ;ϕÞ
..
.

sPPðN;θ;ϕÞ

3
777777777775

; RPPðθ;ϕÞ¼

2
666666666664

RPPð1;θ;ϕÞ
RPPð2;θ;ϕÞ

..

.

RPPði;θ;ϕÞ
..
.

RPPðN;θ;ϕÞ

3
777777777775

;

Wðθ;ϕÞ¼

2
666666666664

wð1;θ;ϕÞ wð2;θ;ϕÞ ··· wðN;θ;ϕÞ
wð2;θ;ϕÞ wð3;θ;ϕÞ ··· wð1;θ;ϕÞ

..

.

wði;θ;ϕÞ wðiþ1;θ;ϕÞ ··· wðN−iþ1;θ;ϕÞ
..
.

wðN;θ;ϕÞ wð1;θ;ϕÞ ··· WwðN−1;θ;ϕÞ

3
777777777775

;

(14)

where i refers to the temporal sample.
Thus, based on equation 19, the amplitude difference at different

azimuths is

S�ðθ;ΔϕijÞ ¼ Sðθ;ϕiÞ − Sðθ;ϕjÞ
¼ Wðθ;ϕi;ϕjÞ½RPPðθ;ϕiÞ − RPPðθ;ϕjÞ�
¼ Wðθ;ϕi;ϕjÞ½Riso

PPðθÞ þ Rani
PP ðθ;ϕiÞ − Riso

PPðθÞ
− Rani

PP ðθ;ϕjÞ�
¼ Wðθ;ϕi;ϕjÞf½aδN ðθ;ϕiÞ − aδN ðθ;ϕjÞ�rδN
þ ½aδT ðθ;ϕiÞ − aδT ðθ;ϕjÞ�rδTg; (15)

where ϕi and ϕj denote the ith and jth azimuth angles, respectively,
and

Wðθ;ϕi;ϕjÞ ¼
1

2
ðWðθ;ϕiÞ þWðθ;ϕjÞÞ; (16)

and rδN and rδT denote the reflection ratio vectors of the fracture
weaknesses, given by

rδN ¼ ½ rδN ð1Þ; rδN ð2Þ; · · · ; rδN ðiÞ; · · · ; rδN ðNÞ �T;
rδT ¼ ½ rδT ð1Þ; rδT ð2Þ; · · · ; rδT ðiÞ; · · · ; rδT ðNÞ �T: (17)

Then, we expand the P-P wave approximation (equation 10) as a
Taylor series around the dominant frequency (fdom) of the seismic
data as

RPPðθ;ϕ;fiÞ≈RPPðθ;ϕ;fdomÞþðfi−fdomÞ d
dfðRPPðθ;ϕ;fiÞÞ;

(18)

where f is the frequency, and fi and fdom denote the arbitrary fre-
quency and dominant frequency of the seismic data, respectively.
Because δN is frequency dependent, the P-P reflection coefficient

is expressed as a function of frequency and fracture weaknesses.
By substituting equation 18 into equation 15, the azimuthal differ-
ence seismic data S�ðθ;ΔϕijÞ is rewritten as

S�ðθ;Δϕij;fiÞ≈RPPðθ;Δϕij;fdomÞWðθ;ϕi;ϕj;fiÞ

þWðθ;ϕi;ϕj;fiÞðfi−fdomÞ
�
½aδN ðθ;ϕiÞ−aδN ðθ;ϕjÞ�

drδN
df

þ½aδT ðθ;ϕiÞ−aδT ðθ;ϕjÞ�
drδT
df

�
; (19)

The iso-frequency seismic component S�ðθ;Δϕij; fiÞ can be ob-
tained by applying spectral decomposition to seismic data differen-
tiated by azimuth. To further process the data, we perform a
convolution operation on both sides of Equation 19 using a spectral
wavelet corresponding to the dominant frequency fdom, i.e., spectral
equalization processing, allows the equation to be rederived as

S�ðθ;Δϕij;fiÞWðθ;ϕi;ϕj;fdomÞ−S�ðθ;Δϕij;fdomÞWðθ;ϕi;ϕj;fiÞ

≈Wðθ;ϕi;ϕj;fiÞWðθ;ϕi;ϕj;fdomÞðfi−fdomÞ
�
½aδN ðθ;ϕiÞ

−aδN ðθ;ϕjÞ�
drδN
df

þ½aδT ðθ;ϕiÞ−aδT ðθ;ϕjÞ�
drδT
df

�
; (20)

and it can be simply expressed as

d ¼ Gm; (21)

where

d ¼ S�ðθ;Δϕij; fiÞWðθ;ϕi;ϕj; fdomÞ
− S�ðθ;Δϕij; fdomÞWðθ;ϕi;ϕj; fiÞ;

G ¼ Wðθ;ϕi;ϕj; fiÞWðθ;ϕi;ϕj; fdomÞðfi − fdomÞ
½aδN ðθ;ϕiÞ − aδN ðθ;ϕjÞ; aδT ðθ;ϕiÞ − aδT ðθ;ϕjÞ�;

m ¼
�
drδN
df

;
drδT
df

�
T
: (22)

The frequency-dependent anisotropic parameters can be obtained
with the least-squares solution:

m ¼ ðGTGÞ−1GTd: (23)

The workflow of the proposed frequency-dependent AVAZ inver-
sion for fracture weakness dispersion is shown in Figure 3. First, the
smoothed pseudo Wigner-Ville distribution (SPWVD) method is
applied to transform the real data into the time-frequency domain.
Second, we use a fast Fourier transform (FFT) to obtain the wavelet
in the frequency domain. Finally, time-frequency maps obtained in
the first step and frequency-domain wavelet obtained in the second
step are used to compute the fracture weakness dispersion thanks to
the frequency-dependent AVAZ inversion.
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AZIMUTHAL REFLECTIVITY ANALYSIS

In this section, the exact solution, the approximation (equa-
tion 10), and anisotropic reflectivity methods are applied to simulate
azimuthal seismic data. They are also used to verify the accuracy of
the reflection coefficients. The approximated one (equation 10)
makes use of the linear approximation (equation 10) and assumes
weak reflection and anisotropy. We consider the exact solution
based on the extended Zoeppritz equation (Schoenberg and
Protazio, 1992), which is given in Appendix B. The reflection co-
efficients are computed by using the properties provided in Table 2.
Figure 4 shows the simulation results for the exact and approximate
reflection coefficients for the case of a single interface.
The results show that there is a small difference between the

approximate and exact results at near incidence angles. We have
extracted the AVAZ reflection coefficients for an azimuth angle
of 0° and AVAZ reflection coefficients for an incidence angle of
30° and then compared them with the AVAZ reflection coefficients
obtained with the exact solution and anisotropic reflectivity method
(Figure 5). Although the trend of the AVAZ response is approxi-
mately the same at far angles, there is a significant difference be-
tween the reflection coefficients. Moreover, we compare the results
of the anisotropic reflectivity method with the reflection coefficients

obtained with the exact equation, which shows that they give the
same results for the case of the two-layer medium. In essence,
the anisotropic reflectivity method is equivalent to the exact equa-
tion approach in the case of a single interface. Next, we will apply
the exact equation as a forward operator to simulate the AVAZ
responses of fractures under different filling conditions.

Mineral filling

Substituting the model properties from Table 3 into equation A-2,
we obtain the fracture weaknesses that vary with the P-wave modu-
lus of the filling materials (Figure 6). Fracture weakness decreases

Figure 3. Workflow of the proposed method. FAVAZI: frequency-
dependent AVAZ inversion.

Figure 4. Exact and approximate reflection coefficients as a
function of the incidence and azimuth angles for the case of a single
interface.

Figure 5. Comparison of AVAZ reflection coefficients by using the
approximation and the exact solution, for (a) the 0° azimuth angle
and (b) 30° degree incidence angle.

Figure 6. Real part of fracture weaknesses as a function of the
P-wave modulus of the fracture filling minerals.
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when the fractures are filled with a mineral rather than a fluid by
approximately 10−5. Fracture weakness indicates fracture deforma-
tion under load. When the fracture is filled with minerals, its
strength increases, which in turn reduces the fracture-induced aniso-
tropic characteristics. As the strength of the fracture fillings in-
creases, the weak points of the fracture decrease exponentially
and consequently the degree of anisotropy decreases. Therefore,
fractures are less prone to deformation when filled with minerals,
especially hard minerals, such as pyrite, quartz, and calcite.

The obtained fracture weaknesses are substituted into the stiff-
ness matrix of the two-layer medium. The properties of this medium
are shown in Table 2. The upper layer corresponds to an isotropic
medium and the lower layer to an HTI medium containing fractures.
Then, we extend the Zoeppritz equation to model the reflection co-
efficient, as shown in Figure 7. The plot shows that there is a neg-
ligible difference from a practical point of view when the pore infill
is a mineral.

Fluid filling

In the case of fractured reservoirs, the fractures might serve as
storage spaces for natural gas in addition to filling with minerals.
Using the same method, we filled the fractures with mixed fluids
with different gas saturations and observed the changes of fracture
weakness parameters. Compared with mineral filled, fluid-filled
fractures exhibit more pronounced anisotropy. The fracture weak-
ness δN is influenced by the volume proportion of gas qg and the
frequency f, as shown in Figure 8. Figure 9 highlights the specific
case of 30 Hz, demonstrating that the frequency-dependent
dispersion induced by gas becomes particularly significant at

Table 3. Elastic properties of the minerals.

Minerals Mb (GPa) μb (GPa) ρ (g=cm3) Reference

Clay Illite 43.92 9.21 2.55 Eastwood and Castagna (1987)

Smecitite 12.10 3.87 2.29 Vanorio et al. (2003)

Kaolinite 19.02 5.98 2.59 Vanorio et al. (2003)

Chlorite 37.09 7.18 2.69 Wang et al. (2001) and Hui et al. (2011)

Brittle Quartz 95.65 44.01 2.65 Carmichael (1988)

Feldspar 57.38 14.97 2.62 Mavko et al. (2020)

Calcite 119.48 32.07 2.71 Simmons (1965)

Dolomite 154.62 45.01 2.87 Humbert and Plique (1972)

Pyrite 316.39 132.28 4.93 Simmons and Birch (1963)

Figure 7. Azimuth-angle-dependent reflection coefficients as a
function of the (a) incidence and (b) azimuth angles for different
fracture filling minerals by using the extended Zoeppritz equation.
Note that reflection coefficients of different minerals exhibit iden-
tical curves at the same incidence angle.

Figure 8. (a) Real part RðδNÞ and (b) imaginary part IðδNÞ of the
normal fracture weakness as a function of frequency and volume
proportion of gas for fluid-bearing fractured rocks.
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low gas saturations. As qg increases, the two parts increase, while
the slope of each part with respect to qg gradually decreases. The
cases of qg ¼ 25%, 50%, and 75% are also extracted and shown in
Figure 10. The higher frequency results yield stronger dispersion,
especially when the saturation is low. There is sensitivity of AVO to
gas saturation and frequency.
Subsequently, the established stiffness coefficient matrix is used

to simulate the variation of seismic reflectivity with respect to in-
cidence and azimuth angle. Figures 11 and 12 show the P-P reflec-
tion coefficient as a function of frequency and qg for (a) increasing
angle of incidence with constant azimuth angle of 0° (Figures 11a
and 12a) and (b) increasing azimuth angle with constant incidence
angle of 40° (Figures 11b and 12b). Note that the reflection coef-
ficient varies significantly with frequency, setting the basis for the
differentiation between mineral-filled and liquid-filled fractures us-
ing frequency-dependent properties. In addition, simulations can be
performed for different qg values, which affect the magnitude of the
AVAZ reflection coefficient, with the coefficient varying more sig-
nificantly as the fractures contain more gas. The fracture filling fluid
causes dispersion of the seismic response, which can be applied to
identify gas-bearing fractures.

REAL SEISMIC-DATA APPLICATION

The frequency-dependent AVAZ inversion method is used on
field data acquired in the Luzhou area in the southern Sichuan basin,
southwest China. A series of relatively tight anticlines and wide and
gentle synclines are present with an echelon in the north–south di-
rection. The uplift is an asymmetric anticline, and the sides of the
uplift correspond to two depressions. Therefore, a number of frac-
tures have developed, especially at the edge of the uplift. Figure 13
shows the poststack seismic data. The green curve corresponds to
the top of a fractured shale reservoir. The reservoir is located in the
Longmaxi-Wufeng shale formation at approximately 3500 m deep,
and the sediments above and below the reservoir are limestones.
Due to the tectonic activity in the area, large fractures have been
developed in the shale. Moreover, the fractures all have high tilt
angles, and the reservoir is identified as an HTI medium. The data
include 500 azimuthal prestack angle gathers, with the azimuth an-
gle ranging from 1°–180° with an increment of 30°, and the inci-
dence angle ranging from 0°–30° with an increment of 5°. Well
A is located at the 2094th common depth point (CDP), as indicated
with the red line in Figure 13.
Figure 14 shows the results of the seismic well tie, which is very

important for the seismic-based prediction. The poststack synthetic
data are simulated by convolving the reflectivity series with the seis-
mic wavelet. The incidence- and azimuth-angle-dependent wavelets
are extracted from the azimuthal angle gather with well-log data.
The poststack reflectivity series is

Figure 9. Extracted (a) real part RðδNÞ and (b) imaginary part IðδNÞ
of the normal fracture weakness at 30 Hz.

Figure 10. Extracted real part RðδNÞ of the normal fracture weak-
ness at qg ¼ 25%, 50%, and 75%.

Figure 11. The P-P wave reflection coefficients for different frequen-
cies for (a) increasing incidence angle with constant azimuth angle
of 0° and (b) increasing azimuth angle with constant incidence angle
of 40°.
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r ¼ IdP − IuP
IdP þ IuP

; (24)

where IP denotes the P impedance, shown in Figure 14a. Figure 14b
and 14c corresponds to the synthetic seismic data and the poststack
seismic data, respectively. The seismic well tie is estimated by the
dynamic time warping algorithm (Hale, 2013). The P-wave imped-
ance shows a strong increase at the top of the reservoir (approximately
3800 m), and is resolved by the inversion. Figure 15a and 15b shows
the real azimuthal angle gather and the simulated synthetic data by
using equation 13 with the depth-time correlation of Figure 14.

The reservoir is located at the lower parts of Figures 14 and 15,
and thus we mainly focus on the well-tie results of the lower event.
Figure 16a and 16b shows the extracted partial-stack data along

the 0° and 90° azimuth angles, respectively, and the difference be-
tween the two profiles is given in Figure 16c. The dashed black lines
indicate the location of the reservoir. The gas-bearing area is high-
lighted in Figure 16 with dashed red lines. A comparison with the
difference profile shows that there is a significant fracture-induced
azimuthal amplitude difference at the fractured shale reservoir lo-
cation. We can see that the AVA and AVAZ characteristics of the
synthetic data are consistent with the real seismic data.
A spectral decomposition is performed on the azimuthal difference

data, to obtain the time-frequency analysis of the seismic traces. A
SPWVD method (Auger and Flandrin, 1995) is used to process
the data. Figure 17 shows the decomposition results of the 1801 trace
for the 0°, 60°, and 90° azimuth angles at an incidence angle of 25°.
The strong energy clusters approximately at 1.8–2.0 s correspond to
the top of the shale gas reservoir. The seismic data show significant
dispersion in the gas reservoir, with the main frequency decreasing
from 35 Hz to less than 30 Hz. Figure 18 shows the iso-frequency
sections of the azimuthal angle difference data obtained with the
SPWVD method at 15, 30, and 45 Hz. The dashed red boxes corre-
spond to the location of the reservoir. The difference between nonre-
servoir and reservoir areas is small at low frequencies, e.g., 15 Hz. The
difference increases when considering high frequencies (30 to 45 Hz),

Figure 13. Poststack profile of the real seismic data, where the
green curves and red line correspond to the top of a fractured res-
ervoir and well location, respectively.

Figure 12. The P-P wave reflection coefficients for different qgs for
(a) increasing incidence angle with constant azimuth angle of 0° and
(b) increasing azimuth angle with constant incidence angle of 40°.

Figure 14. The (a) P-wave impedance seismic
data and the duplicated 11 CDP synthetic data
by using reflectivity series convolved with (a)
the wavelet and (c) the well tie at the well location.
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particularly at azimuths of 120°–30° and 150°–60°. Figure 19 indicates
that a time-frequency analysis reveals the energy loss at high frequen-
cies. However, iso-frequency sections exhibit a poor lateral continuity.
The proposed method has potential limitations in its application.

Factors such as coherent or random noise interference, complex dis-
tributions of fracture orientations, and the intrinsic heterogeneity of
geologic formations may affect the precision and reliability of in-
version results. In addition, certain assumptions of the model, such
as homogeneity within each fracture zone, might not be reasonable
in describing the formations with stronger heterogeneity or
anisotropy, thus potentially affecting the result of fluid detection.
Finally, the inversion method, in equation 23, is applied to extract

the dispersion of the fracture weakness, drδN =df. Here, we only use
the data within the seismic frequency band (5–50 Hz) for inversion,
minimizing the influence of other factors (such as noise) on the
dispersion inversion. As shown in Figure 19, the fracture weakness
dispersion, as an appropriate fluid indicator, is well adapted to
shale-gas reservoirs. Due to the presence of shale gas, significant
dispersion occurs, mainly related to the fracture weakness param-
eter, as demonstrated by the proposed method.
To further verify the effectiveness of the proposed method, Fig-

ure 20 shows inverted fracture weakness dispersion and a water-sat-
uration well-log profile. The target reservoir is located approximately
at 1.8 s at the well location. The water saturation at the reservoir
ranges between 70% and 80%, which means that the gas saturation
of fractured gas-bearing reservoir is approximately 25%. As shown in
Figures 8–10, the gas in fractures can induce an apparent dispersion

Figure 15. The (a) real azimuthal angle gather and (b) the simulated
synthetic data by using the depth-time correlation in Figure 13.

Figure 17. Spectral decomposition of the 1801 trace for (a) 0°,
(b) 60°, and (c) 90° azimuth angles at an incidence angle of 25°.

Figure 16. Extracted partial-stack seismic data along (a) 0° and
(b) 90° azimuth angles, and (c) the difference between the two profiles.
The dashed black lines correspond to the location of the fractured
reservoir.
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feature, which can be used to estimate fluid properties. Low water
saturation (high gas content) is correlated with high-frequency
dispersion. The real seismic data application demonstrates that the
proposed method can be adopted for fractured reservoir characteri-
zation and fluid detection.

CONCLUSION

Fracture weaknesses, in particular the normal fracture weakness, are
strongly frequency-dependent parameters when they are saturated with
gas. The dispersion of the fracture weakness is an important factor in

indicating the type of fluid. Introducing an effective
model for wave dispersion and considering a
cracked rock with different fracture filling materi-
als, we analyze the P-P wave reflection coefficients
as a function of frequency and fluid properties. Our
analysis reveals that the normal fracture weakness
exhibits considerable dispersion, i.e., frequency
dependence, when the fractures are filled with
gas. We propose a frequency-dependent AVAZ in-
version method for characterizing the fracture in-
fills, leveraging the wave dispersion to improve
the accuracy of fluid identification. The proposed
methodology is effectively applied to field data,
providing a new approach for identifying fluid
types and improving subsurface characterization.
The proposed method has demonstrated its ef-

fectiveness in improving subsurface medium
characterization and identifying fluid types.
However, potential limitations, such as noise in-
terference, geologic heterogeneity, and variations

in fracture orientations and distributions, may affect its perfor-
mance. Addressing these limitations in future work could enhance
its applicability under various field conditions.
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APPENDIX A

FREQUENCY-DEPENDENT STIFFNESS MATRIX
OF THE HTI MEDIUM

According to the Schoenberg model (Schoenberg and Sayers,
1995), the normal and tangential weaknesses are

δN ¼ U33e; δT ¼ U11e: (A-1)

The fractures may be filled with the different types of fillings,
such as gas, oil or water, or mineral components. However, in deep
fractured shales, a number of paleo fractures may be filled with min-
erals, as a result of long-term geologic effects. In the case of min-
eral-filled fractures, the WIFF effect is not important and we neglect
the associated relaxation time. In such cases, U11 and U33 are

Figure 18. Iso-frequency sections of azimuth angle difference data obtained by the
SPWVD method at (a–c) 15, (d–f) 30, and (g–i) 45 Hz.

Figure 19. Fracture weakness dispersion estimated with the
proposed inversion method.

Figure 20. (a) Water saturation well-log curve and (b) fracture
weakness dispersion.
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U11 ¼
16

3ð3–2gÞ
1

1þ 4
πð3–2gÞ

μ 0
μbχ

;

U33 ¼
4

3gð1 − gÞ
1

1þ 1
πð1−gÞ

K 0þð4μ 0=3Þ
μbχ

; (A-2)

, where g ¼ μb=Mb, χ is the aspect ratio of the fractures, and K 0 and
μ 0 denote the bulk and shear moduli of the fracture fillings, respec-
tively, which are frequency independent.
Variations with frequency need to be accounted for if the

fractures are partially fluid saturated. For fluid-filled fractures,
equation A-2 is not valid because of the presence of the loss mecha-
nism. According to the modified Hudson model (Pointer et al.,
2000), U11 and U33 for partially saturated fractures considering
the WIFF effect are

U11 ≈
16

3ð3–2gÞ ; U33 ≈
4

3gð1−gÞð1−ω2Γ2− iωΓÞ; (A-3)

where i ¼ ffiffiffiffiffiffi
−1

p
, ω is the angular frequency, and Γ are relaxation

times along the spatial axes x3, given by

Γ ¼ 1

πμð1 − gÞχ3
ηlFlðqlÞ
ð1 − qlÞ2

; (A-4)

where

FlðqlÞ ¼ 0.053ð1 − qlÞ½1þ cos πð1 − qlÞ�; (A-5)

and ql denotes the volume proportions of liquid, and ηl is the cor-
responding viscosity. According to Bakulin et al. (2000a, 2000b),

δdryN ¼ 4e
3gð1 − gÞ ; δdryT ¼ 16e

3ð3–2gÞ (A-6)

are the normal and tangential weaknesses of the dry fractures,
respectively. Thus, by combining equation A-6 into equation A-5,
we obtain

U11 ¼ δdryT =e; U33 ¼ δdryN =e− ðω2Γ2þ iωΓÞδdryN =e: (A-7)

As shown in equation A-7, the U33 can be considered with two
parts, i.e., related to the dry-fracture part U1

33 ¼ δdryN =e and fluid-
induced dispersion part U2

33 ¼ −ðω2Γ2 þ iωΓÞδdryN =e. It is shown
that U2

33 is not completely decoupled, and δdryN still affects U2
33.

Here, we neglect the effect and attribute it to the fluid-related term
U2

33. Then, substituting U11 and U33 into the stiffness matrix gives

C ¼ Cb þ Ccrack þ Cfluid; (A-8)

where

Cb ¼

2
6666664

Mb λb λb 0 0 0

λb Mb λb 0 0 0

λb λb Mb 0 0 0

0 0 0 μb 0 0

0 0 0 0 μb 0

0 0 0 0 0 μb

3
7777775
; (A-9)

Ccrack ¼−

2
66666666664

Mbδ
dry

N
g

λbδ
dry

N
g

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λ2b
μ δ

dry
N

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λbδ
dry

N
g

λ2b
μ δ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 δdryT 0

0 0 0 0 0 δdryT

3
77777777775
; (A-10)

and

Cfluid ¼ðω2Γ2þ iωΓÞ

2
6666666664

Mbδ
dry

N
g

λbδ
dry

N
g

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λ2b
μ δ

dry
N

λbδ
dry

N
g 0 0 0

λbδ
dry

N
g

λbδ
dry

N
g

λ2b
μ δ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777777775
:

(A-11)

The stiffness matrix of rocks with partially saturated fractures is
frequency dependent, and the ratio of the imaginary and real parts of
matrix varies with frequency, fluid saturation, fracture aspect ratio,
and fracture density.
In the presence of weak anisotropy, the stiffness components cijkl

at a weak-contrast interface can be considered to be perturbed on the
basis of a reference (or background) medium. Thus, the real and
imaginary parts of the perturbation are

R½ΔCðωÞ�¼−

2
66666666666664

ð1−ω2Γ2ÞMbδ
dry
N

g ð1−ω2Γ2Þλbδ
dry
N
g ð1−ω2Γ2Þλbδ

dry
N
g 0 0 0

ð1−ω2Γ2Þλbδ
dry
N
g ð1−ω2Γ2Þλ2bμbδ

dry
N ð1−ω2Γ2Þλbδ

dry
N
g 0 0 0

ð1−ω2Γ2Þλbδ
dry

N
g ð1−ω2Γ2Þλbδ

dry

N
g ð1−ω2Γ2Þλ2bμbδ

dry
N 0 0 0

0 0 0 0 0 0

0 0 0 0 δdryT 0

0 0 0 0 0 δdryT

3
77777777777775

;

I½ΔCðωÞ�¼ωΓ

2
66666666666664

Mbδ
dry
N

g
λbδ

dry
N
g

λbδ
dry
N
g 0 0 0

λbδ
dry
N
g

λ2b
μb
δN

λbδ
dry
N
g 0 0 0

λbδ
dry
N
g

λbδ
dry
N
g

λ2b
μb
δdryN 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777777775

: (A-12)

APPENDIX B

AZIMUTHAL SEISMIC-DATA SIMULATION

We consider the two homogeneous arbitrarily anisotropic half-
spaces separated by a planar interface. The two half-spaces are char-
acterized by the densities ρ1, ρ2 and the stiffness tensor components
c1ijkl, c

2
ijkl. By assuming that P waves impinge at normal incidence

from the upper half-space to the interface, reflected and transmitted
P, S1, and S2 waves are generated, whose displacement vectors are
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unðx; tÞ ¼ Unpn exp½−iωðt − sn · xÞ�; (B-1)

whereU is the scalar amplitude; i ¼ ffiffiffiffiffiffi
−1

p
; t is the propagation time of

the seismic wave at a distance x; n ¼ 0 denotes the incidence wave;
n ¼ 1; 2; 3 correspond to the reflected S1, S2, and P waves, and
n ¼ 4; 5; 6 are the corresponding transmitted waves, respectively;
and pn and sn are the polarization and slowness vectors, which can
be obtained by solving the Christoffel equation (Ali and Jakobsen,
2011, 2014):

ðϒ − ρIÞP ¼ 0; (B-2)

where I is the identity diagonal matrix, and equation B-2 can be
specified as

2
4ϒ11 − ρ ϒ12 ϒ13

ϒ21 ϒ22 − ρ ϒ23

ϒ31 ϒ32 ϒ33 − ρ

3
5
2
4p1

p2

p3

3
5 ¼ 0; (B-3)

where ϒij is obtained from the generalized Hooke’s law:

ϒ11 ¼ c11s21 þ c66s22 þ c55s23 þ 2c16s1s2;

ϒ22 ¼ c66s21 þ c22s22 þ c44s23 þ 2c26s1s2;

ϒ33 ¼ c55s21 þ c44s22 þ c33s23 þ 2c45s1s2;

ϒ12 ¼ ϒ21 ¼ ðc12 þ c66Þs1s2 þ ðc66 þ c12Þs1s2;
ϒ13 ¼ ϒ31 ¼ ðc13 þ c55Þs1s3 þ ðc36 þ c45Þs2s3;
ϒ23 ¼ ϒ32 ¼ ðc23 þ c44Þs2s3 þ ðc36 þ c45Þs1s3: (B-4)

Then, with the given incidence and azimuth angles, the horizontal
slownesses s1 and s2 are

s1 ¼
sin θ cos ϕffiffiffiffiffiffiffiffiffiffiffi

c11=ρ
p ; s2 ¼

sin θ sin ϕffiffiffiffiffiffiffiffiffiffiffi
c11=ρ

p : (B-5)

The vanishing determinant detðϒ − ρIÞ ¼ 0 gives the solutions of
the vertical slowness s3 with associated polar vectors p.
Schoenberg and Protazio (1992) rationalize and generalize the

Zoeppritz equation to the anisotropic case, which gives the exact
solution of the reflection and transmission coefficients. The reflec-
tivity coefficient matrix is given by

R¼ðY 0−1YþX 0−1XÞ−1ðY 0−1Y−X 0−1XÞ

¼

2
64
RPP RSP RTP

RPS RSS RTS

RPT RST RTT

3
75; (B-6)

where

X¼

2
666664

eP1 eS1 eT1

eP2 eS2 eT2

−ðc13eP1 þc36eP2 Þs1 −ðc13eS1 þc36eS2 Þs1 −ðc13eT1
þc36eT2

Þs1
−ðc23eP2 þc36eP1 Þs2 −ðc23eS1 þc36eS2 Þs2 −ðc23eT2

þc36eT1
Þs2

−c33s3P eP3 −c33s3SeS3 −c33s3TeT3

3
777775
;

(B-7)

Y¼

2
666664

−ðc55s1þc45s2ÞeP3 −ðc55s1þc45s2ÞeS3 −ðc55s1þc45s2ÞeT3

−ðc55eP1 þc45eP2 Þs3P −ðc55eS1 þc45eS2 Þs3S −ðc55eT1
þc45eT2

Þs3T
−ðc45s1þc44s2ÞeP3 −ðc45s1þc44s2ÞeS3 −ðc45s1þc44s2ÞeT3

−ðc45eP1 þc44eP2 Þs3P −ðc45eS1 þc44eS2 Þs3S −ðc45eT1
þc44eT2

ÞsT3

eP3 eS3 eT3

3
777775
;

(B-8)

where e is the polar vector obtained by solving the Christoffel equa-
tions (Aki and Richards, 1980), the subscripts f·gP, f·gS, and f·gT
denote the P, S1, and S2 waves, respectively. The terms X 0 and Y 0

are the matrix functions of parameters as in equations B-7 and B-8
with primed parameters for the lower transmitting medium. P-P
reflected seismic data are considered, which can be expressed as
the reflectivity profile convolved with the seismic wavelet:

Sðθ;ϕÞ ¼ Wðθ;ϕÞRPPðθ;ϕÞ þ n; (B-9)

where n is the noise.
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