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Abstract
Underground carbonate deposits are widespread worldwide and have considerable hydrocarbon potential. They are generally 
characterized by a complex microscopic structure that affects the properties of the macroscopic fluid flow and the relevant 
petrophysical behavior. In recent years, advances in digital technology have helped reveal the microstructures (i.e., pore 
connections, cracks, pore size and radius, etc.) of rocks in the subsurface. In this work, drill cores (cylinder) are taken from 
a deep carbonate deposit in the Sichuan Basin in western China to perform computed tomography (CT) scans, thin sections 
and mineral analysis. The characteristics of lithology and pore structure are investigated. Ultrasonic experiments with differ-
ent fluid types and pressures are conducted to determine rock samples’ wave velocities, attenuation and crack porosity. The 
experimental data show that the rocks have low porosity/permeability and a complex pore/crack system, leading to significant 
pressure, crack and fluid type effects on the velocities, dispersion and attenuation. We develop a model of multiple pore-
crack structures for carbonates by considering the complex structure and fluid properties. Digital cores are reconstructed 
based on CT scans, image processing and threshold segmentation. The aspect ratios of pores and cracks are extracted with 
their volume fractions to simulate the rock skeleton with the differential effective medium theory. The Biot–Rayleigh wave 
propagation equations are applied to simulate the effects of different pore and fluid types on the velocity and attenuation of 
P-waves. The agreement between the modeling results and the ultrasonic and log data confirms that the model can validly 
reproduce the wave responses.
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Introduction

As the global demand for hydrocarbon resources contin-
ues to increase and conventional oil and gas reserves are 
gradually depleted, the development of deep hydrocar-
bon reservoirs, combined with technological advances to 
date, has become a significant source (and challenge) for 
the petroleum industry (Zou et al. 2014; Wang et al. 2020; 
Pang et al. 2020; Ablimiti et al. 2022; Jun et al. 2023). The 
Longwangmiao Formation in the central Sichuan Basin in 
western China comprises carbonate reservoirs at a depth of 
more than 4.5 km, rich in natural gas reserves (Zhou et al. 
2015; Pang et al. 2019). The reservoirs are characterized 
by complicated microporous structures, pores, caves and 
cracks as well as the heterogeneous distribution of immisci-
ble fluids (Pang et al. 2019), which affect the macroscopic 
responses and acoustic properties (Guo et al. 2020a, 2020b; 
Zhang et al. 2021, 2022; Pang et al. 2024a; Luo et al. 2023; 
Li et al. 2024).
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Experimental and theoretical studies have shown that 
the wave velocities and attenuation are related to the pore 
structure, the type of fluid and the saturation in the rock 
(Sakhaee-Pour and Bryant 2014; Solano et al. 2017; Ba 
et al. 2017; Kumar et al. 2019; Ghasemi et al. 2020). The 
wave-induced local fluid flow within the pore system is a 
critical factor leading to the velocity dispersion and attenu-
ation. Theoretical models have been developed to interpret 
the relationships between pore structure, fluid distribution, 
wave velocity and anelasticity, including patchy saturation 
models (White 1975; Carcione et al. 2003; Vogelaar et al. 
2010; Kobayashi and Mavko 2016), double-porosity models 
(Pride and Berryman 2003; Tang 2011; Ba et al. 2011) and 
squirt-flow models (Dvorkin and Nur 1993; Chapman 2003; 
Gurevich et al. 2010; Song et al. 2016).

Recently, the characterization of microstructure and 
fluid distribution based on rock-physics models (RPMs) has 
attracted widespread attention (Carcione and Avseth 2015; 
Pang et al. 2022, 2024b), which simulates the reservoir with 
a simplified pore structure by assuming that the rock con-
tains one or two types of pores with single shapes (Gupta 
et al. 2012; Golikov et al. 2012; Ba et al. 2013; Tan et al. 
2020; Pang et al. 2020, 2021). However, for the carbonate 
reservoirs of the Sichuan Basin, the simplified geometries of 
the assumptions cause difficulties in describing the complex 
pore structure.

With the advances in X-ray computed tomography (CT), 
digital core technology has become an important approach 
for the study of rock microstructures and pore fluid distri-
bution (Okabe and Blunt 2004; Andrä et al. 2013; Kady-
rov et al. 2022). The method maps the minerals as well as 
the geometric and volumetric properties of the rock on the 
location-dependent volume (Wildenschild et al. 2002; Zhou 
et al. 2016; Schlüeter et al. 2014; Alqahtani et al. 2021). The 
digital rocks are reconstructed by numerical processing of 
images to reveal the geometric and topological structures 
of pores and throats (Madonna et al. 2013; Sun et al. 2019), 
porosities and permeabilities associated with multiphase 
flow (Bultreys et al. 2022; Spurin et al. 2023) and capillary 
pressure (Paustian et al. 2021), in areas such as hydrogen 
storage (Jangda et al. 2023), general upscaling problems 
(Menke et al. 2021), effective elastic and hydraulic proper-
ties and thermal conductivity (Saenger et al. 2005, 2016; 
Saxena et al. 2019; Siegert et al. 2022; Wang et al. 2022).

This work uses digital cores to obtain information about 
the microstructures and suitable RPM. Core samples are col-
lected from the carbonate reservoirs in working area G of 
Sichuan Basin to perform CT scanning, mineral analysis and 
cast thin-section analysis (CTS) to analyze the pore-throat 
system. P- and S-wave ultrasonic experiments related to dif-
ferent fluid types, and confining pressures are performed 
to study the effects of lithology, pressure, cracks and fluid 

Fig. 1  Log data from Well A. Left to right: a Porosity, b gas saturation, c P-wave velocity, d S-wave velocity, e density and f gamma-ray
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on velocities and attenuation. We propose a multiple pore-
crack structure model (MPCSM) based on the digital core 
method and the equivalent medium and wave propagation 
equations. The wave velocities and attenuation for different 
fluid types (gas/water) in the real pore space are modeled 

and compared with the measured data of the sample and the 
actual field data.

Core samples and laboratory experiments

Geology and cores

The working area comprises the carbonate formations with 
hydrocarbon resources in the Sichuan Basin's working area. 
The depth of the Longwangmiao Formation reservoirs is 
more than 4.5 km, the temperature is about 120 °C and 
the overburden and pore pressures are about 110 MPa and 
65–70 MPa, respectively. The rocks have a complex pore 
structure and an immiscible fluid mixture of gas and water; 
lithologically, it comprises dolomite rock with low porosity, 
and the pore fluids are mainly gas and water (Zhou et al. 
2015; Qu et al. 2023). Petrophysical analyses allow it to 
evaluate logging data properties (Well A). The porosity, 
gas saturation, P- and S-wave velocities, density and natu-
ral gamma of the well log are giving (Fig. 1), with the red 
dashed box indicating the section of the formation with high 
gas production. Reservoir porosity is low (less than 5%), gas 
saturation is greater than 30%, elastic velocities and density 
are high and natural gamma is low.

We take two cores (DS3 and DS17) from Well A high gas 
production section at a depth of 4627.15 m and 4625.6 m, 
respectively. DS3 and DS17 are processed into cylinders 
with a diameter of 38 mm and a length of about 50 mm, with 
porosities of 1.96% and 3.46%, permeabilities of 0.16 and 
0.001 mD and densities of 2.802 and 2.748 g/cm3, respec-
tively. The samples were subjected to CTS and CT scan tests 
and P- and S-wave ultrasonic experiments in dry and water-
saturated conditions and at different pressures to analyze the 
petrophysical responses.

Thin sections and CT scans

Figure 2 shows the CTS of the samples, with DS3 developed 
cracks and DS17 containing intergranular and dissolved 
pores. The mineral analyses by X-ray diffraction (XRD) 
experiment show that the samples are almost pure dolomite 
with a content of more than 98%. CT scans carry on the sam-
ples to obtain the 3D scan data of DS3 and DS17 (Fig. 3). 
They contain 1980 and 1954 images of 1398 × 1404 and 
1408 × 1402 pixels, respectively, and a resolution of 27.6 μm 
per pixel. The CT datasets have a 16-bit format, resulting in 
a grayscale intensity ranging from 0 to 65,535, reflecting the 
pore-throat spaces and minerals. It shows that DS3 is denser 
than DS17, with a lower pore content, but contains cracks, 
consistent with the results of the thin section and porosity 
measurements.

Fig. 2  Cast thin sections of the carbonate samples DS3 (a) and DS17 
(b)

Fig. 3  Three-dimensional CT images of samples DS3 (a) and DS17 
(b)
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Ultrasonic measurements

P- and S-wave ultrasound investigations are carried out with 
different confining pressures and fluid types. First, the rock 
is dried and placed in the experimental setup (Fig. 4), which 

consists of a digital oscilloscope and a pulse generator (Guo 
et al. 2009), with P and S waves generated by the wave trans-
mitter (b) on steel endplates; the receiving transducer (d) 
is connected to the digitizing board in the PC via a signal 

Fig. 4  Diagram of the ultrasonic experimental setup. a Pore fluid inlet; b wave transmitter; c rock sample; d receiving transducer and e pore fluid 
outlet

Fig. 5  Ultrasonic waveforms 
of rock samples and reference 
material (a P-wave of DS3; b 
S-wave of DS3; c P-wave of 
DS17 and d S-wave of DS17). 
The red and blue lines represent 
full gas and full water satura-
tion states, and the black line 
represents the reference material
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amplifier; the pore fluid inlet (a) and outlet (e) in endplate 
allow the passage of pore fluids through the sample (c). 
Ultrasonic measurements (1 MHz) are performed at confin-
ing pressures of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 
60 MPa, pore pressure of one atmosphere and a temperature 
of 26.5 °C to record the waveforms (Fig. 5). Then, water is 
injected into the samples at a pore pressure of 20 MPa, and 
the waveforms are recorded at confining pressures of 25, 
30, 35, 40, 45, 50, 55 and 60 MPa (Fig. 5). In addition, alu-
minum blocks of the same size as the samples are prepared 
as reference material, and the waveforms are also measured.

Elastic wave velocities are obtained on the basis of the 
sample length and the propagation time, resulting from the 
first arrivals of the waveforms at different pressures. The 
attenuation (reciprocal of the quality factor, 1/Q) of the spec-
imens is computed with the spectral ratio method (Toksöz 
et al. 1979) as follows:

where f is the frequency, and A1(f) and A2(f) are the ampli-
tude spectra of the rock and reference material, respectively. 
G1(f) and G2(f) are geometrical factor related to the shape 
and size of the sample and aluminum block, x is the sample 
length and V denotes the wave velocity.

Experimental results

Figures 6 and 7 show the experimental results of the two 
samples, with the P- and S-wave velocities (VP and VS) and 
the P-wave attenuation as a function of the effective pressure 
(Peff, confining minus pore pressure) for the gas (black) and 
water-saturated (blue) cases. The scatters represent different 
samples. The elastic wave velocities increase, and the attenu-
ation decreases with increasing Peff, which is mainly related 
to gradual closing cracks with increasing Peff.

Furthermore, the P-wave attenuation of rock at full water 
saturation is higher than that of gas-saturated rock, and the 
attenuation of DS17 is higher than that of DS3. In the dry 
state, the wave velocities of DS17 in the low-pressure range 
are lower than those of DS3, while the behavior reverses 
with increasing Peff. In the wet case, DS17 has a lower VS 
and a higher VP than DS3. The waves induce a local fluid 
flow in the pore space, which causes wave dissipation. Sam-
ple DS17, with a higher porosity and more pore fluid, attenu-
ates more than DS3 (Fig. 7).

(1)ln

[
A1(f )

A2(f )

]
= −

�x

QV
f + ln

[
G1(f )

G2(f )

]
,

Fig. 6  P- and S-wave velocities of the samples as a function of effec-
tive pressure, a dry case and b wet case

Fig. 7  P-wave attenuation of the samples as a function of the effec-
tive pressure in the dry (gas) and wet (water) states
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Estimation of the pore structure

We reconstruct digital 3D cores based on the CT images 
and CTS to investigate the pore-crack structures of the car-
bonates. Subsequently, we obtain effective crack density 
and aspect ratio based on the experimental data at different 
pressures and David–Zimmerman (DZ) model (David and 

Zimmerman 2012) to calculate crack porosity of the sam-
ples, which is used to quantitatively characterize the effects 
of cracks on velocity and attenuation.

Digital cores

First, three-dimensional digital kernels are constructed from 
rock images, a non-local-mean filter is applied for denoising 

Fig. 8  CT scan images and pore structure of carbonate samples (DS3 and DS17)

Fig. 9  Estimation flowchart of the pore-crack aspect ratios of the samples
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and threshold segmentation. The pixels of the dataset rep-
resent the pore space and minerals (Fig. 8). It shows the 
samples, CT images and the pore structure in 3D space. 

Subsequently, the representative elemental volume (REV) 
is selected to obtain an appropriate size that can accurately 
characterize the rock microstructure while meeting storage 
and computational requirements. In addition to meeting 
these two conditions, the results of porosity are also used 
as constraint conditions to obtain the appropriate REV. Due 
to the limited calculation capabilities, a partial volume of 
 4003 pixels is selected from the individual 3D dataset. It 
is considered that REV can be adopted in the analyses on 
acoustic characteristics of rock (Saxena et al. 2019; Kadyrov 
et al. 2022).

Then, the micropore structure is characterized based on 
the digital samples. Figure 9 shows a flowchart for the cal-
culation of the pore-crack aspect ratios of the samples. First, 
based on the segmented samples, the pixel labeling algo-
rithm of connecting area is used to label all the connected 
pores in the images. The radii (r, R) of the minor and major 
axes of the labeled pores are calculated by using the maxi-
mum inner tangent and minimum outer circle algorithms, 
respectively. Finally, the different pore-crack aspect ratios 
(the ratio of the radii of the minor and major axes, r/R) and 
the corresponding volume fractions (the proportion of pixels 
representing the pores) are determined (Fig. 10). From the 

Fig. 10  Distributed frequency and volume fraction as a function of the pore-crack aspect ratios of samples DS3 (a and b) and DS17 (c and d), 
respectively

Fig. 11  Crack porosity of the samples as a function of effective pres-
sure
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figure, the aspect ratio distribution essentially corresponds 
to the Gaussian distribution, and sample DS3 shows many 
micropores in the region with small aspect ratios.

Estimation of crack porosity

We estimate the crack porosity of rocks based on the experi-
mental data by using the DZ model. The soft pores inter-
nal the rock are assumed to be closed at the high-pressure 
limit, where the total porosity approaches the stiff porosity 
well (David and Zimmerman 2012; Qi et al. 2021). First, 
the rocks’ bulk and shear moduli are estimated from the 
elastic wave velocities at high effective pressures. The elastic 
moduli are given based on the Mori–Tanaka theory (Mori 
and Tanaka et al. 1973):

where Kstiff and Gstiff are the bulk and shear moduli, respec-
tively, of the rock containing only stiff pores, K0 and G0 are 
the corresponding moduli of grain, ϕstiff is the stiff porosity 
and P and Q are polarization factors, which are related to the 
aspect ratio α of the pores and Poisson's ratio v of the solid 
(Zhang et al. 2019; Qi et al. 2021).

Next, the effects of cracks on the elastic properties of rock 
are considered, and the effective moduli are:

where vstiff=(3Kstiff − 2Gstiff)∕(6Kstiff + 2Gstiff) is the Poisson 
ratio of the rock containing only stiff pores. The least squares 
regression fits the cumulative crack density Γ at each effec-
tive pressure.

Furthermore, the pore aspect ratio αp as a function of 
effective pressure is as follows (Zhang et al. 2019):

where the effective Young's modulus at high pressures is 
Eeff = 3Keff[1 − 2veff].
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Fig. 12  a P- and b S-wave velocities, and c P-wave attenation as a 
function of crack porosity
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The crack porosity ϕC can be determined as follows 
(David and Zimmerman 2012):

Figure 11 shows the estimated results, where ϕC decreases 
with Peff. At low pressures, ϕC of sample DS17 is higher 
than that of DS3, while ϕC of DS3 is higher than that of 
DS17 when Peff increases, indicating that more micropores 
of DS17 are gradually closed with increasing Peff, which is 
consistent with the results in Fig. 6.

Figure 12 shows the elastic velocities and P-wave attenu-
ation as a function of ϕC, where the velocities decrease with 
ϕC, while the attenuation increases. The wet-rock samples 
have a higher VP and a lower VS compared to dry ones. Sam-
ple DS17 exhibits a greater difference in elastic velocities 
and attenuation between the two saturation states, which 
is consistent with the greater dispersion and attenuation 
observed in Figs. 6 and 7.

(7)�C =
4��p

3
Γ.

Multiple pore‑crack model

Based on the digital core method and the theories of 
equivalent medium and wave propagation, we propose a 
multiple pore-crack structure model (MPCSM) for carbon-
ate rocks with complex pore structures and fluid mixture, 
which is shown in Fig. 13 as a flowchart of modeling. By 
considering a variety of pores and cracks with different 
aspect ratios in the rocks, the model addresses the limita-
tions of conventional models that rely on the simplified 
assumptions of rock microstructures and mitigates to some 
extent the effects of the complex geometry of carbonate 
rocks.

Modeling procedure

For the carbonate reservoirs, the pore space is extracted 
based on digital cores, divided into several stiff and soft 
pores with different aspect ratios according to the crack 
porosity (Fig. 13). Next, we consider a double-porosity 
structural model, assuming that the rock skeleton consists 
of a host medium and an inclusion phase containing the 

Fig. 13  Flowchart of the MPCSM
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same mineral. The host medium and inclusion phase con-
tain stiff and soft pores, respectively, with different aspect 
ratios. The differential effective medium theory—DEM 
(Berryman 1992) is applied to add the multiple pores and 
cracks into the host medium and inclusions, respectively, 
and then add the inclusions into the host phase to obtain 
the elastic moduli of the dry rock. Berryman (1992) pro-
posed the DEM equations to compute the bulk and shear 
moduli of the host, inclusion and rock skeleton:

where the initial conditions are K∗(0) = K1 and �∗(0) = �1 , 
i.e., the bulk and shear moduli of the host, respectively, y 
is the content of phase 2, K2 and μ2 are the corresponding 

(8)(K2 − K∗)P(∗2)(y) = (1 − y)
d

dy
[K∗(y)],

(9)(�2 − �∗)Q(∗2)(y) = (1 − y)
d

dy
[�∗(y)],

moduli and P*2 and Q*2are geometrical factors (Mavko et al. 
2009).

The Biot–Rayleigh equations (Ba et al. 2011, Appendix A) 
give the wet-rock moduli, and the velocities and attenuation 
of rocks containing multiple pores/cracks, and the MPCSM 
is constructed to model the wave responses. P-wave veloc-
ity and attenuation are obtained from a plane wave analysis 
(Carcione 2022):

(10)VP =
[
Re

(
v−1

)]−1
,

(11)Q−1 =
Im

(
v2
)

Re
(
v2
) ,

Fig. 14  a P-wave velocity and b attenuation of the carbonate samples 
at full gas and water saturations as a function of frequency

Fig. 15  Comparison between the MPCSM results (a P-wave velocity 
and b attenuation) and experimental data
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with the complex velocity v = �∕k (Appendix A), while ω 
and k being the angular frequency and complex wavenum-
ber, respectively.

Model responses

The established model is applied to simulate the wave 
responses of the carbonate samples with different fluids. 
According to Mavko et al. (2009), the dolomite has bulk, 
shear moduli and density of 94.9 and 45 GPa, and 2.87 g/
cm3, respectively. As for the properties of gas and water, 
the bulk modulus, density and viscosity coefficient are 
0.018 and 2.24 GPa, 0.09 and 1.002 g/cm3 and 1.6 ×  105 and 
9.8 ×  104 Pa s, respectively. The aspect ratios of pores and 
cracks and the corresponding volume fractions (Fig. 10) are 
determined by using the digital cores, and the radius R0, poros-
ity ϕ20 and aspect ratio of the inclusion are 10 μm, 0.2 and 1, 
respectively.

The P-wave velocity dispersion and attenuation are simu-
lated for the cases of gas and water saturation (Fig. 14). The 
model results indicate that the dispersion and attenuation of 
the rock saturated with water are higher compared to rocks 
saturated with gas, and the main anelasticity bands are at a 
lower frequency. The P-wave velocity of DS3 is lower than 
that of DS17.

Model and data

The experimental data of the samples at different pressures 
are used to verify the model, Fig. 15 shows the P-wave 
velocity and the attenuation of the model at 1 MHz com-
pared with the data. The mean values of the data are consid-
ered to check the velocity dispersion in the two saturation 
states. The sample DS17 with higher porosity shows a high 
dispersion. From Fig. 15, the model can effectively describe 
the dispersion of wave velocity and attenuation associated 
with the pore fluid.

To validate the model, log data from borehole A of the 
target formation (the red dashed box indicates the section 
with high gas production) are then extracted, together with 
the experimental samples at the sampling depth, (Fig. 16), 
with the black curves representing the log data. Figure 16a 
shows the porosity and gas saturation. The simulations (cir-
cles) and the average values of the ultrasonic data (crosses) 
are placed at the extraction depth (Fig. 16b and c represent 
DS3 and DS17, respectively), with yellow and blue repre-
senting gas and water saturation cases, respectively. Upon 
comparing the model results with the available data, it is 
observed that the simulations are generally consistent with 
the data. The deep burial depth and high overburden pres-
sure (about 110 MPa) of the formation lead to higher elastic 
velocities than those in the measurements and simulations, 
except for sample DS17 with saturating water (which shows 
high-velocity dispersion, as described in Fig. 15).

Fig. 16  Modeling results compared with the ultrasonic and log data (a porosity and gas saturation; b results and data of DS3 and c results and 
data of DS17). The circles and crosses represent the model results and the average values of the experimental data, respectively
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Conclusions

In this study, rock cores were taken from carbonate reser-
voirs, and CT scans, XRD mineral analysis and thin sec-
tions were made to investigate the lithology, pores, throats 
and microstructures. Digital core samples are created using 
image processing algorithms to determine the aspect ratios 
of all pores and cracks and the corresponding volume frac-
tions. Then, ultrasonic P and S experiments are performed 
at different pressures with full gas/water states. The crack 
porosity and attenuation are estimated by using the DZ 
model and the spectral ratio method, respectively. The 
pore structure and fluid type effects on the elastic proper-
ties are analyzed, finding that the cracks (associated with 
pressure) and pore fluid significantly affect the velocity and 
attenuation.

The proposal model considers the complex pore struc-
tures and fluid types for the structure of multiple pores and 
cracks. The model is built based on digital cores, DEM 
and the Biot–Rayleigh equations to obtain the wet-rock 
responses, compared with the ultrasonic and log data (Well 
A). The results show that the model can effectively describe 
the characteristics of wave dispersion and attenuation for the 
real microstructures with different saturating fluid types. This 
study bridges the gap between the digital core method and 
theoretical petrophysical modeling, which can be helpful for 
better understanding the fluid flow and mechanical behaviors 
of reservoirs with complex microstructures.

Appendix A

Biot–Rayleigh dispersion equation

The stiffness moduli of the wet rock as well as the velocity 
and attenuation of the P-waves are determined by using the 
Biot–Rayleigh equations (Ba et al. 2011). The complex wave-
number k is determined by inserting a plane P-wave kernel into 
the equations and solving the dispersion equation of:

where: 

(A-1)

||||||||

a11k2 + b11 a12k2 + b12 a13k2 + b13

a21k2 + b21 a22k2 + b22 a23k2 + b23

a31k2 + b31 a32k2 + b32 a33k2 + b33

||||||||
= 0,

a11=A + 2N + i(Q2�1 − Q1�2)x1 b11= − �11�
2 + i�(b1 + b2),

a12=Q1 + i(Q2�1 − Q1�2)x2 b12= − �12�
2 − i�b1,

and:

where ϕ1 and ϕ2 are the absolute porosities (ϕ1 + ϕ2 = ϕ), 
ϕ1 = v1ϕ10 and ϕ2 = v2ϕ20. ϕ10 and ϕ20 are the local porosities 
of the host and inclusions, respectively, v1 and v2 are the vol-
ume ratios of the host medium and inclusions (v1 + v2 = 1), 
respectively, and R0 is the inclusion radius, and ω is angular 
frequency. The Biot dissipation coefficients (Biot 1956 and 
Ba et al. 2011) and the permeabilities of the two phases 
(Mavko et al. 2009) are as follows:

where κ0 = 25 mD. The stiffness and density coefficients are 
as follows:

a13=Q2 + i(Q2�1 − Q1�2)x3 b13= − �13�
2 − i�b2,

a21=Q1 − iR1�2x1 b21= − �12�
2 − i�b1,

(A-2)a22=R1 − iR1�2x2 b22= − �22�
2 + i�b1,

a23= − iR1�2x3 b23=0,

a31=Q2 + iR2�1x1 b31= − �13�
2 − i�b2,

a32 = iR2�1x2 b32=0,

a33=R2 + iR2�1x3 b33= − �33�
2 + i�b2,

(A-3)

x1 = i(�2Q1 − �1Q2)∕Z,

x2 = i�2R1∕Z,

x3 = - i�1R2∕Z,

(A-4)

Z =
i���2

1
�2�20R2

0

3�1

−
�f�

2R2
0
�2

1
�2�20

3�10

− (�2
2
R1 + �2

1
R2),

(A-5)b1 = �1�10

�
f

�1

, b2 = �2�20

�
f

�2

,

(A-6)�1 =
�0�

3
1

1 − �2
1

, �2 =
�0�

3
2

1 − �2
2

,

(A-7)A=(1−�)Ks −
2

3
N −

Ks

Kf

(
Q1 + Q2

)
, N = �b,

(A-8)Q1=
�1�Ks

� + �
, Q2=

�2Ks

1 + �
,



1293Acta Geophysica (2025) 73:1281–1295 

where Ks and Kf comprise the bulk moduli of minerals and 
fluid, respectively, Kb and μb are the bulk and shear moduli 
of the frame (obtained with the DEM equations), respec-
tively, ρs and ρf represent the densities corresponding to the 
mineral mixture and fluid, respectively, and:

where Kb1 and Kb2 correspond to the bulk moduli of the host 
and crack inclusions, which are computed by adding stiff and 
soft pores (with different aspect ratios) by the DEM equa-
tions, respectively.
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