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Abstract: The low-resolution CT scan images obtained from drill core generally struggle with problems 
such as insufficient pore structure information and incomplete image details. Consequently, predicting 
the permeability of heterogeneous reservoir cores relies heavily on high-resolution CT scanning images. 
However, this approach requires a considerable amount of data and is associated with high costs. To solve 
this problem, a method for predicting core permeability based on deep learning using CT scan images with 
diff erent resolutions is proposed in this work. First, the high-resolution CT scans are preprocessed and then 
cubic subsets are extracted. The permeability of each subset is estimated using the Lattice Boltzmann Method 
(LBM) and forms the training set for the convolutional neural network (CNN) model. Subsequently, the high-
resolution images are downsampled to obtain the low-resolution grayscale images. In the comparative analysis 
of the porosities of diff erent low-resolution images, the low-resolution image with a resolution of 10% of the 
original image is considered as the test set in this paper. It is found that the permeabilities predicted from the 
low-resolution images are in good agreement  with the values calculated by the LBM.  In addition, the test data 
are compared with the results of the Kozeny-Carman (KC) model and the measured permeability of the whole 
sample. The results show that the prediction of  the permeability of tight carbonate rock based on deep learning 
using CT scans with diff erent resolutions is reliable.
Keywords: CT scans; deep learning; carbonate; permeability

Introduction

Permeability is a key parameter in the evaluation 
of high-quality underground reservoirs and is widely 
used in fields such as oil exploration and geological 
engineering. It indicates the ability of fluids to flow 
through porous media and its value is closely related 
to the pore structure of the medium (Doyen, 1988; 
Fredrich et al., 1993; Gholami et al., 2012; Karimpouli 

et al., 2010; Mohaghegh et al., 1995). Considering that 
the morphology, spatial distribution and connectivity 
of pores and cracks have a direct influence on the 
flowability of subsurface fluids in rocks, the accurate 
extraction of pore structure and the establishment of 
a quantitative relationship between pore structure and 
permeability are of great importance for optimizing 
reservoir development and improving the efficiency of 
resource utilization (Ba et al., 2023; Giesche, 2006; Katz 
et al., 1986; Rezaee et al., 2006; Ross and Bustin, 2009).
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In recent years, the advancement of X-ray micro-
computed tomography (micro-CT) has opened up new 
possibilities for the accurate extraction of the internal 
pore structure of rocks (Goral et al., 2019; Pang et al., 
2024; Peng et al., 2012; Salek and Beckingham, 2023; 
Schmitt et al., 2016; Wildenschild et al., 2002; Zhai 
et al., 2020). Dehghan Khalili et al. (2013) provided a 
detailed characterization of pore structure in carbonate 
rocks using CT scans at different resolutions and 
discussed the applicability of the porosity-permeability 
relationship determined based on CT imaging on a large 
scale. Ramandi et al. (2016) developed a novel imaging 
agent technology that used CT scans to visualize internal 
fractures in coal rock and analyzed the effects of rock 
type and mineralization on the permeability of coal 
rock. Liu et al. (2017) combined micro-CT and SEM 
techniques to construct a digital multiscale core and 
characterize the pore structure of tight sandstone from 
the Yanchang Formation in the Ordos Basin, finding 
that the permeability and electrical conductivity of these 
sandstones are primarily dominated by micropores, 
with permeability being more dependent on pore 
structure than porosity. Huaimin Dong et al. (2023) 
integrated micro-CT images, nuclear magnetic resonance 
measurements, experimental mercury injection data, 
and fractal discrete fracture networks to creat a high-
precision digital core of complex porous rocks. Zhu et 
al. (2024) used this technology to extract pore structures 
from coarse sandstones, medium sandstones and 
siltstoneand calculate the effective permeability of the 
three sandstone types using the Navier-Stokes equations. 
The investigations show that porosity and permeability 
generally have a linear relationship. However, at low 
porosity values, the data show considerable scatter, so 
that the consideration of pore structure parameters (e.g. 
pore throat radius) is necessary for a more accurate 
assessment of permeability. This technology not only 
reveals the microstructure of the porous medium, but 
also forms the basis for subsequent simulations of 
rock elasticity and transport properties (Amstan, 2019; 
Blunt et al., 2013; Chung et al., 2019; Pang et al., 2024; 
Wildenschild and Sheppard, 2013).

In CT imaging, the quality of reconstructed images 
is directly influenced by the field of view and image 
resolution, both of which are closely related to the 
number of voxels in each dimension (Sakellariou et al., 
2004). Peng et al. (2014) found that the permeabilities 
predicted from two CT images, with resolutions of 1.85 
μm/pixel and 5.92 μm/pixel for the Berea sandstone 

were almost identical. This result suggests that lower 
resolution images can capture the primary flow paths 
of the rock, while smaller pores can be neglected. Shah 
et al. (2015) discussed the effects of different voxel 
resolutions on the result of three-dimensional (3D) 
pore-scale imaging of diff erent porous media. Although 
low-resolution images cover a wider range of samples 
and can effectively capture their heterogeneity, they 
are limited in their ability to accurately reflect small-
scale pore structures, making them unsuitable for direct 
permeability calculations. In contrast, high-resolution 
images provide more detailed information about the 
pore structure and are suitable for the direct calculation 
of flow properties. However, their coverage area is 
smaller and often does not match the scale of core 
samples used in conventional experiments (Botha and 
Sheppard, 2016). Therefore, CT imaging needs to fi nd a 
balance between resolution and fi eld of view to ensure 
image quality while adequately representing the overall 
properties of the sample.

Neural networks are one of the cores of machine 
learning algorithms. Qadrouh et al. (2019) predict 
reservoir permeability from well logs data by using a 
neural network. Moreover, considering the significant 
advantages of deep learning in feature extraction and 
classification, it plays an important role in extracting 
detailed information from CT scan images. Alqahtani 
et al. (2018) proposed an innovative solution based on 
deep learning that utilizes a supervised learning method 
for fast prediction of various physical properties of 
porous media from two-dimensional (2D) micro-CT 
images using convolutional neural networks (CNNs). 
This method eff ectively addresses the loss of detail that 
occurs in conventional image segmentation techniques 
when processing smaller pore structures, as well as 
the discrepancies in results that can arise due to users’ 
subjective biases. You et al. (2021) used a progressive 
growing generative adversarial network (PG-GAN) to 
obtain high-quality grayscale cross-sectional images, 
and applied linear interpolation to reconstruct full 
3D digital cores from sparse 2D scans. They found 
that the reconstructed images and the extracted pore 
networks were visually almost identical to the real data, 
overcoming the limitations of conventional imaging 
technologies (such as micro-CT), including high costs 
and low resolution. This precise characterization of pore 
structures is crucial for simulating fluid flow paths in 
rocks and predicting the permeability of rock reservoirs 
(Blunt et al., 2013; Da Wang et al., 2019; Jiang et 
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al., 2023; Ni et al., 2021; Shah et al., 2016). Martys 
et al. (1999) were the first to identify the resolution 
requirements necessary for permeability simulation, 
which typically require suffi  ciently high image resolution 
to accurately characterize the fl ow paths of pore systems 
with at least four open pixels. In particular, the pixel size 
must be at least four times smaller than the minimum 
throat diameter. The reason for this is that in simulations 
the interface between the solid and the fl uid must fulfi ll 
the non-sliding condition: Of the four pixels, only the 
two middle open pixels allow signifi cant fl ow. In lower 
resolution images, the throats may only be represented 
by grayscale pixels, rendering the simulation of fluid 
fl ow ineff ective and leading to  a predicted permeability 
of zero. Sudakov et al. (2018) systematically compared 
the performance of diff erent machine learning and deep 
learning models in permeability prediction from images 
based on permeability simulated by 3D CT scan images 
of Berea sandstone and pore network methods.

Especially when simulating the permeability of 
reservoir rocks with the LBM, it is essential to solve 
the Navier-Stokes equations within high-resolution 
pore structures (Boek et al., 2010; Jiang et al., 2014; 
Raeini et al., 2012). Apourvari and Arns (2014) 
improved the LBM by incorporating the Brinkman 
approach (Brinkman, 1949) to evaluate the effects of 
sub-resolution porosity on permeability. Although this 
method accounts for regions of sub-resolution porosity, 
it still requires estimation of permeability in these areas 
where it is often challenging to determine the geometric 
morphology of the pore space a priori. Tembely et al. 
(2020) compared three numerical simulation techniques 
for calculating rock permeability based on high-
resolution CT scan images:Pore Network Modeling 
(PNM), Finite Volume Method (FVM), and LBM. 
They proposed a machine learning process to quickly 
and accurately predict permeability from 3D micro-CT 
images. In 2021, they expanded this method to develop 
an artificial intelligence workflow to quickly estimate 
the permeability of complex carbonate rocks. Chung 
et al. (2021) introduced a novel analysis method - the 
concentric tube method - to study flow fields in low-
resolution CT images with under-resolved features and 
found that the average error in permeability obtained 
from down-sampled images was 13.2% compared to the 
value derived from high-resolution images. Jiang et al. 
(2023) combined original CT image data of rocks with 
permeabilities obtained from LBM flow simulations 
with high-resolution CT images and trained a neural 

network with deep learning techniques to predict the 
permeability distribution in larger areas. Finally, they 
used a Darcy fl ow solver to calculate the permeability of 
the entire core, which led to results that closely matched 
the experimental data. 

Considering that the simulation of rock permeability 
based on high-resolution CT scan images is accurate but 
time-consuming and ineffi  cient, a deep learning method 
for predicting permeability using CT scan images with 
different  resolutions is proposed in this study. Firstly, 
high-resolution CT scan images are processed and 
subsets are extracted, and the permeability of each subset 
is calculated using the LBM to generate the training data 
for the deep learning model. Subsequently, the high-
resolution CT scan images are downsampled to varying 
degrees to determine a minimum acceptable resolution 
for the input data to ensure that computational accuracy 
is maintained. Finally, the generated deep learning model 
is used to predict rock permeability and the predicted 
results are compared with the measured values.

Rock samples

The MX-A dolomite sample used in this study 
was obtained  from the carbonate reservoir of the 
Longwangmiao Formation in the Gao Shiti-Moxi area of 
the Sichuan Basin. Due to several episodes of tectonic 
movement and diagenetic processes, the reservoir 
exhibits characteristics such as strong heterogeneity, low 
porosity and permeability, and a variety of pore-fracture 
types (Zeng et al., 2014). The test sample was taken 
from a depth of 4656.7 m and is a cylindrical specimen 
with a length of 50.31 mm and a diameters of 37.93 mm. 
The measured dry density, porosity and permeability 
were 2.679 g/cm³, 3.52%, and 0.088 mD, respectively. 
The main technical specifi cations of the equipment used 
for the CT scanning experiments included a maximum 
X-ray source voltage of 120 keV, a resolution of 1-2 μm, 
and a sample size range of 2-50 mm. Figure 1 shows a 
selection of CT scan images of the sample, including 
ten representative CT images. The results show that the 
sample is tight, has fewer pores and poor connectivity.

During the CT scanning process, the sample was 
scanned at a high resolution of 27.6 μm/voxel, resulting 
in an image of 1430×1446 pixels. This configuration 
enables the capture of fine internal pore structures and 
their interconnection details within the sample. Figure 
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2 shows the pore structure of the sample after image 
segmentation, and illustrates that the pores and cracks 
(shown in black) occupy a relatively small portion of the 
sample and have low connectivity, which is consistent 
with the  measured low porosity and permeability .

Dataset Preparation

1. Training Dataset
1.1 Processing of CT Scan Data

In order to provide standardized training data for  
permeability prediction using deep learning with CT 

Figure 1. CT scan images.The fi gure displays a total of 10 
images, starting from sample number N0320, with one image 

selected every 16 images, comprising 10 representative 
ones.

Figure 2. Pore structure of the rock sample after image 
segmentation.

24.60 mm
24.60 mm

48.20 m
m

scan images of diff erent resolutions, preprocessing, data 
selection and subset detection for the obtained high-
resolution CT scan images were performed in this study 
to ensure data quality and applicability. The specific 
workfl ow is as follows:

a. CT image acquisition: A CT scanning device was 
used to scan a carbonate rock sample with a diameter of 
37.93 mm at a resolution sof 27.6 μm/voxel, resulting in 
a total of 1971 CT scan images.

b. Image preprocessing: (1) Cropping: Images were 
cropped around the center of the scanned image to obtain 
square images with a resolution of 900×900 pixels (see 
Figure 3b). (2) Noise reduction: Since the acquired CT 
images were grayscale and contained significant noise, 
mean fi ltering was applied to improve the image quality. 
This fi ltering method eff ectively reduced the noise and 
producted smoother and more uniform images while 
preserving the boundary features, as shown in Figure 3c. 
(3) Threshold Segmentation: To convert the images into 
a binary format, a simple thresholding algorithm was 
used. This algorithm, which is based on the histogram, 
assigns labels according to voxel intensity. By selecting 
a local minimum of the intensity histogram as the 
threshold, a binary image was generated (Figure 3d), 
with a  threshold value of 55 being selected.

c. Data Selection: From the 1971 images acquired, 
erroneous data from both ends were removed, resulting 
in a final data set of 1600 binary images and 1600 
grayscale images,  ensuring accuracy and reliability.

d. Subset Acquisition: The 900×900 pixel images 
were further segmented into subsets of 100 × 100 pixels. 
Each profile contained 81 sub-volumes with a depth 
of 16, resulting in a total of 1296 sub-volumes. The 
segmentation process is illustrated in Figure 4. Figure 
5 shows the distribution of binary porosity across the 
different subsets, and clearly shows that most of the 
porosities of the subsets are in the range of 0-0.05, while 
the frequency distribution of porosity values between 
0.1 and 0.2 is relatively uniform and generally higher. 
This observation indicates that the majority of the 
subset images show low porosity, but a certain number 
of samples still show high porosity. In the range of 
0.3 to 0.4, the frequency of porosity values decreases 
signifi cantly.

1.2 Calculation of Permeability for the Subset
The methods for calculating rock permeability based 

on CT scan images include PNM, FVM, LBM, etc 
(Zhang et al., 2021; Li et al., 2017). This study primarily 
employs the LBM to compute the permeability of the 
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Figure 3. (a) Original grayscale image (1430 × 1446 pixels), 
(b) Cropped image (900 × 900 pixels), (c) Filtered image, (d) Binary pore image.

subset. The core of this approach is the discretized 
Boltzmann equation, which describes the evolution of 
the particle distribution function in both space and time,

1( , ) ( , ) ( , ) ( , )( )eq
i i i i if t t t f t f t f tx c x x x ,

(1)

where fi(x,t) represents the particle distribution function 

at position x and time t for particles with velocity ci. 
denoting discrete velocity directions (a 3D lattice with 
19 velocity vectors (D3Q19) is used in the present 
study), Δt is the time step,  τ is the relaxation time and  
eq
if  is the equilibrium distribution function:
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where ωi represents the weight associated with the 
velocity ci. The lattice speed is denoted by cs. The 
macroscopic density ρ and velocity u can be computed 
from the distribution function.

i
i
f  ,                                   (3)

i i
i
fu c  .                                (4)

The steps involved in the lattice Boltzmann method 
(LBM) for calculating permeability are as follows: 
First, initialize the distribution function for the lattice 
points and the macroscopic variables, such as density 
(ρ) and velocity (u). Next, the Bhatnagar-Gross-Krook 

(BGK) model is applied to compute the post-collision 
distribution function, which is then propagated to 
adjacent lattice points in the corresponding direction. 
During the propagation process, the solid walls, periodic 
boundaries, and inlet/outlet boundaries are typically 
handled using the rebound method. Subsequently, the 
macroscopic variables are recovered from the updated 
distribution function. This process is repeated to advance 
the simulation until the termination condition is met. 
The calculated subset permeability (shown in Figure 6) 
is utilized for deep learning training. The results indicate 
that most subset permeability values are concentrated in 
the range of 0-0.1 mD, while the frequency of values in 
the range of 0.1-0.5 mD is signifi cantly lower, suggesting 
that most subsets exhibit low permeability. 

Figure 4. Dividing the 3D Rock Core into subset with 100×100×100 Dimensions.

Figure 5. Histogram of porosity statistics of the subset. Figure 6 Histogram of permeability statistics of the subset.

2. Model Training
2.1 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) are 
essential components of deep learning models, designed 
to effectively extract features through a series of 

nonlinear transformations achieved by convolutional 
layers (Alqahtani et al., 2021; LeCun et al., 1998). This 
study employs a 3D Convolutional Neural Network (3D 
CNN) for permeability prediction, which is capable of 
extracting features across three spatial dimensions while 
thoroughly considering contextual information. This 
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3D feature extraction ability enables the CNN to better 
capture the complexities of rock microstructure when 
processing CT scan images. The architecture of the 3D 
CNN includes convolutional layers, pooling layers, and 

fully connected layers, as illustrated in Figure 7. This 
architecture includes an input layer, hidden layers, and 
an output layer.

Figure 7. Schematic diagram of the Convolutional Neural Network.

ResNet, a deep residual network, primarily addresses 
the issues of vanishing and exploding gradients by 
introducing residual blocks during the construction of the 
CNN. This approach enables the network to be trained at 
greater depths, overcoming the performance limitations 
encountered by traditional CNN as their depth increases 
(He et al., 2016). The fundamental structure of ResNet 
comprises several key components:

a. Initial Convolutional Layer: ResNet typically 
begins with a 7×7 convolutional layer with a stride of 2, 
followed by a max pooling layer for preliminary feature 
extraction from the CT images of rock samples.

b. Residual Blocks: Central to ResNet are multiple 
residual blocks, each containing several convolutional 
layers. These blocks are connected through shortcut (or 
identity) connections, which directly link the input to the 
output of the convolutional layers. This design allows 
the network to retain important feature information 
during deep learning, enhancing training efficiency by 
minimizing information loss.

c. Global Average Pooling Layer: Following the 
residual blocks, ResNet utilizes a global average pooling 
layer instead of a traditional fully connected layer. This 
signifi cantly reduces model parameters and mitigates the 
risk of overfi tting.

d. Fully Connected Layer: Finally, the features 
obtained from global average pooling layer are input 
into a fully connected layer to produce the predicted 
permeability results.

The model selected for this study is ResNet-34, 

which comprises 34 layers, as shown in Figure 8. With 
its deeper network structure, ResNet-34 can eff ectively 
learn complex features in rock CT images. However, as 
the network depth increases, the demands for training 
time and computational resources also rise.

2.2 Loss Function and Accuracy Measurement
During the training process, five loss functions were 

employed to optimize the network model, namely: Mean 
Squared Error (MSE, see Equation 5), Mean Absolute 
Error (MAE, Equation 6), Huber Loss (Equation 7), 
Mean Squared Logarithmic Error (MSLE, Equation 8), 
and Log-Cosh Loss (Equation 9).
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where yj represents the actual value of the j-th sample, 
the superscript p denotes the predicted value, and n 
indicates the number of samples in each dataset.

Predicting penetration rates based on 
multi-resolution CT scans 

1. Multi-resolution CT scan images 
In this study, a linear interpolation method is used to 

downsample 1600 high-resolution grayscale images to 
obtain lower-resolution counterparts. Figure 9 shows the 
comparison between the downsampled image and the 
original image. The number 90×90 in the fi gure indicates 
that the resolution of the image was reduced to 10% of 
the original image, with the fi le size dropping from 364 
KB to 5.24 KB. It can be seen that the details of the 
pore structure in the images gradually become blurred 
as the resolution decreases. To further analyze the eff ect 
of resolution on the pore structure, three images with 
different resolutions- 920 μm/voxel, 276 μm/voxel 
and 27.6 μm/voxel-were selected as low, medium, and 
high-resolution grayscale images. These included 2D 
slices of the selected regions, grayscale histograms 
and intensity distribution analyses,  the results of 
which are shown in Figure 10. As the image resolution 
decreases, the intensity distribution shows significant 
smoothing and the smaller details of the pore structure 
are diffi  cult to captured adequately. This phenomenon is 
particularly noticeable in the lower resolution images. 
In addition, images with a resolution of 920 μm/voxel 
show a general increase in the mean gray values in 
the intensity histogram due to spatial averaging (i.e., 
blurring eff ect). This behavior results in multiple regions 
of the pore space, especially the pore throat part, being 
characterized by a large number of intermediate gray 
values, thus compromising the accurate identification 
and characterization of these key features.

The porosities of 1600 grayscale images were then 
calculated under different resolutions, as shown in 
Figure 11. The results show that at a resolution of 
more than 276 μm/voxel, the porosities derived from 
low-resolution images  closely match the porosities 
calculated from high-resolution images, with only 
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minimal differences between the values. However, 
when the resolution is below 276 μm/voxel, signifi cant 
deviations in porosity trends between low- and high-

Figure 9 Comparison of grayscale images with different resolutions. (a) 920μm/voxel, (b) 552μm/voxel, (c) 394.3μm/voxel, 
(d) 276μm/voxel, (e) 184μm/voxel, (f) 138μm/voxel, (g) 110.4μm/voxel, (h) 27.6μm/voxel
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resolution images are evident, with porosity values 
from low-resolution images generally falling below 
those predicted from high-resolution images. This 
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phenomenon suggests that porosity within a given 
range can be eff ectively calculated from low-resolution 
images, saving significant computational time and 
allowing large amounts of image data to be processed on 

smaller computers. Error analysis of the data (as shown 
in Figure 12) show that the error value decreases with 
increasing resolution. Specifi cally, at a resolution of 276 
μm/voxel, the error value approaches zero, which further 

Figure 10. Close-up areas captured in three different resolutions of grayscale images. (a) 27.6 μm/voxel, (b) I276 μm/voxel, (c)  
920 μm/voxel. Each image is accompanied by a grayscale histogram above and an intensity distribution below, with the position 

indicated by a yellow line.

Figure 11. Corresponding Porosity of 1600 Grayscale Images with Different Resolutions.
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confirms the above conclusions. Consequently, images 
with a resolution of 276 μm/voxel were selected as the 
input data for the subsequent deep learning model. This 
choice not only enhances computational efficiency, but 
also ensures the data quality required for model training, 
providing a reliable foundation for future estimates of 
rock permeability.

Figure 12. Normalized Error Functions for Porosity of Images 
with Different Resolutions.

Figure 13. Loss Function for Permeability Prediction. Figure 14. Crossplot of Calculated Data (Ground Truth) and 
Predicted Results from Test Data.

2. Permeability Prediction
2.1 Subset Permeability of Lower Resolution Images

Similar to Section 3.1, this study processes lower-
resolution CT scan images to obtain the permeability 
of each subset, using these images as the test set for 
the deep learning model designed for the predict. The 
learning rate is set to 0.001, and the Adam optimizer 
is utilized for 1,000 iterations on a training platform 
equipped with 64 GB RAM and an NVIDIA RTX 1650S 
GPU. MSE is employed as the loss function to quantify 
the diff erence between the model's predicted values and 
the actual labels.

Figure 13 shows the the development  of the loss 
function during the training process. It is noticeable 
that the total loss value decreases with training, 
indicating that the model is progressively learning and 
effectively capturing the data features,  improving its 
predictive ability. In the early stages of training, the 
loss value decreases rapidly, suggesting that the model 

is performing suboptimally in the initial data fitting 
and still has much room for improvement.  As training 
progresses, the decrease in the loss value gradually 
slows down, indicating that the model is approaching an 
optimal state and that the training results are becoming 
more stable.

Figure 14 presents a comparison between the 
predicted results of the model and the actual calculated 
results on the test set. The results show that the predicted 
values are largely consistent with the trends of the 
actual permeability calculations, and the numerical 

values are also very consistent. Table 1 shows the values 
of  the different error functions for the test set. With 
the exception of the MSE, the values of the other loss 
functions are all less than 1, with the MAE being only 
0.740098. This indicates that the prediction performance 
for the samples of the permeability test set is excellent. 
These results show that effective data augmentation 
and optimization of the model architecture signifi cantly 
improve both prediction accuracy and stability.

Table 1. Values of Various Error Functions for the Permeability Prediction Test Set.
Error Function MSE MAE Huber MSLE Logcosh

Error 1.935215 0.740098 0.460062 0.241644 0.428651
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2.2 Model verifi cation
Previous studies have demonstrated a strong 

correlation between rock permeability and porosity. The 
most widely employed empirical relationship between 
permeability and porosity is described by the Kozeny-
Carman (KC) model (Carman, 1937):

3

21
K C  ,                               (10)

where C is a parameter related to the geometric 
properties of the rock and ϕ denotes the porosity. The 
empirical parameter C in the model is typically not 
constant and is challenging to determine (Xu and Yu, 
2008). To further assess the prediction performance 
of the deep learning model in this study, we compared 
its test data with the results obtained from the KC 
model. The comparison is shown in Fig. 15, The least 
squares method is used to apply the KC model to the 
computational dataset, yielding a C value of 0.01. In 
comparison to the predictions from the classical KC 
empirical model, the CNN prediction method in this 
study captures permeability change features with greater 
detail, especially when the effect of microstructural 
features is considered. Furthermore, this study utilizes 
a downsampled CT scan image as input to the deep 
learning model to predict the permeability of the entire 
rock sample, resulting in a prediction of 0.0775 mD, 
which is closer to the experimentally measured value 
of 0.088 mD. This indicates that the ResNet34 model 
has been eff ectively trained for permeability prediction, 
demonstrating high accuracy.

Figure 15. Relationship between permeability and porosity of 
the samples, the solid line indicates the result of KC equation 

curve fi tting.

Conclusion

This study presents a method for predicting rock 
permeability based on deep learning using CT scan 
images with diff erent resolutions. A training set of high-
resolution CT scan images  with the corresponding 
permeability values was created. Lower-resolution 
images, specifi cally those with a resolution of 276 μm/
voxel, were used as the test set. The analysis shows 
that the test results closely match the permeability 
distributions calculated with the LBM. In addition, the 
predictions of the model  were compared with those of 
the empirical Kozeny-Carman  model and measured 
values. The comparisons show that the established deep 
learning model is effective for predicting permeability 
in tight carbonate rocks. This method not only reduces 
the cost and increase the effi  ciency of the calculations, 
but also utilizes the flexibility and scalability of deep 
learning approaches to account for variations in sample 
characteristics. If the types of samples and scanning 
conditions change, the required image resolution 
can also be adjusted accordingly. By using a deep 
learning model, the image processing workflow can 
be dynamically optimized based on specific sample 
characteristics, thereby improving the accuracy and 
reliability of permeability predictions in rock reservoirs.
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